
Introduction to Python Programming
Andrew J. Pounds, Ph.D.

Exercise Four: Conditional Expressions

As you know computers basically work off of “Boolean” logic -- true/false values represented
electronically by signals being either on or off respectively. Real computer programming starts
when you learn to manipulate these signals to control the flow of logic through a program.

1. Boolean Constants

Python contains two Boolean constants: True and False (note that they are capitalized).

2. Relational (or Comparison) Operators

If is often necessary to compare the values of two quantities using operators like…

With the result of the operation being a boolean value of True or False. For example
the following expression

would be True. Python provides the following relational operators

Operator Description Result with

== Are operands equal False

!= Are operands not equal True

<> Are operands not equal True

> Is left operand greater than
right operand

False

< Is left operand less than
right operand

True

>= Is left operand greater than
or equal to right operand

False

https://www.codecogs.com/eqnedit.php?latex=%3C%2C%5Cleq%2C%3E%2C%5Cge%2C%3D%2C%5Cneq%0
https://www.codecogs.com/eqnedit.php?latex=3%20%3C%204%0
https://www.codecogs.com/eqnedit.php?latex=a%3Cb%0

<= Is left operated left than or
equal to right operand

True

3. Logical Operators

It is also frequently necessary to compare boolean statements with each other. For
example, the following mathematical statement

Asks the question “is 3 less than 4 AND if either 4 is not less than 2 OR if 2 is greater
than three. This expression would result in True being returned. In python the above
statement would be written as

(3<2) and (not(4 < 2) or (2 > 3))

The operators and, or, and not are the three logical operators provided by Python. As
seen in the example, they can be combined to evaluate complicated expressions. The
following table summarizes their possible results.

A B A and B A or B not(A and B) not(A or B)

True True True True False False

True False False True True False

False True False True True False

False False False False True True

3. Program Flow Control

The reason computer programs need these types of operators is so that the expressions
in a computer program can be executed pursuant to specific conditions being met. As
an example, imagine you are writing a program to sound an alarm to remind you to go to
class. You would only want that alarm executing on the days that you had a specific
class. In other words -- IF it is a class day, sound the alarm.

https://www.codecogs.com/eqnedit.php?latex=(%203%20%3C%204%20)%20%5Cland%20(%20%5Cneg(4%20%3C%202)%20%5Clor%20(2%20%3E3))%0

To allow for this type of programming, python has the IF statement that takes a boolean
(logical) argument. For example

A = 5
B = 3
if (A > B):
 print "A is greater than B"
 print A

Will result in the output…

A is greater than B
5

Take particular note of the indention in the code segment above. Inside of the if clause
all of the text that is indented will be executed.

You make more complicated decision structures by using the “else if” statement like
so…

if (boolean expressions one):
 … do all this indented stuff
else if (another boolean expression):
 … do all this indented stuff
else if (a different boolean expressions):
 … do all this indented stuff
else:
 … do this indented stuff if none of the other conditions are met

Is is also possible to NEST if statements (put if blocks inside of other if blocks). This
can become very difficult to debug, but in some cases it is the only way to parse very
difficult logic structure.

It is worth noting that the indented statements corresponding to the FIRST true boolean
expression are executed and the rest are not. For example.

A = 5
B = 6
C = 7
if (A < B):
 print “first block”
else if ((A < B) and (B < C)):
 print “second block”
else:
 print “third block”

Will only print “first block” because even though the second boolean statement is true,
the first block was triggered first.

