

IB
M

IBM Visualization Data Explorer

QuickStart Guide

Version 3 Release 1 Modification 4

SC34-3262-02

IBM IBM Visualization Data Explorer

QuickStart Guide

Version 3 Release 1 Modification 4

SC34-3262-02

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page xi.

Third Edition (May 1997)

This edition applies to IBM Visualization Data Explorer Version 3.1.4, to IBM Visualization Data Explorer SMP Version 3.1.4, and to
all subsequent releases and modifications thereof until otherwise indicated in new editions. Make sure you are using the correct
edition for the level of the product. Order publications through your IBM representative or the IBM branch office serving your locality.
Publications are not stocked at the address given below.

A form for readers’ comments appears at the back of this publication. If the form has been removed, address your comments to:

 IBM Corporation
Thomas J. Watson Research Center/Hawthorne
Data Explorer Development
P.O. Box 704
Yorktown Heights, NY 10598-0704

 USA

If you send information to IBM, you grant IBM a nonexclusive right to use or distribute that information, in any way it believes
appropriate, without incurring any obligation to you.

 Copyright International Business Machines Corporation 1991-1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Figures . vii

Tables . ix

Notices . xi
Products, Programs, and Services . xii
Trademarks and Service Marks . xii
Copyright notices . xiii

About This Guide . xix
A Suggestion on Where to Start . xx
A Note on the Window System . xx
Typographic Conventions . xxi
Related Publications and Sources . xxi

IBM Publications . xxi
Non-IBM Publications . xxi
Other sources of information . xxii

Chapter 1. A Very Quick Overview . 1

Chapter 2. Tutorial I: Using Data Explorer . 3
2.1 Starting Data Explorer . 4
2.2 Accessing the Tutorials . 5
2.3 Where To Begin . 6
2.4 Opening and Executing a Visual Program . 6

Opening a Visual Program . 6
Executing a Visual Program . 8

2.5 Controlling the Appearance of an Object: The Image Window 10
Size, View, and AutoAxes . 10
Using the Sequencer . 14
Using Control Panels . 15
Using the Colormap Editor . 16

Chapter 3. Tutorial II: Editing and Creating Visual Programs 21
3.1 Editing a Visual Program: The Basics . 22
3.2 Creating a Visual Program: Two short examples 24

A simple two-dimensional field . 24
A simple three-dimensional field . 24

3.3 Importing Data . 25
Example 1 . 25
Example 2 . 26

3.4 A thumbnail Sketch of the Data Prompter Choices 27
3.5 Importing Your Own Data . 28
3.6 Visualizing 2-Dimensional Data . 29

Colors . 29
Contour Lines . 29
Streamlines . 30
RubberSheet . 30
2-D Scalar Glyphs . 31
2-D Vector Glyphs . 32

 Copyright IBM Corp. 1991-1997 iii

3.7 Visualizing 3-Dimensional Data . 32
Isosurfaces . 32
Slices . 32
Streamlines . 33
3-D Scalar Glyphs . 34
3-D Vector Glyphs . 34
Volume Rendering . 34

3.8 Tasks and Tools . 36
Adding Captions . 36
Adding Input Tabs to Tool Icons . 37
Connecting Scattered Data Points . 37
Controlling Execution with Switch . 37
Controlling Inputs: Configuration Dialog Boxes 38
Controlling Inputs: Interactors . 39
Creating Animations . 41
Creating and Using Macros . 42
Data-driven Tools . 43
Modules: Using AutoColor . 44
Modules: Using Compute . 44
Modules: Using Map . 45
Modules: Using Plot . 46
Processing Images . 46
Saving and Printing Images . 47

3.9 Scripting Language . 47

Chapter 4. Sample Visual Programs and Sample Macros 49
4.1 Sample Visual Programs . 49

Simple Visual Programs . 49
2-Dimensional Data . 49
3-Dimensional Data . 50
Annotation . 52
Categorical . 53
Colormap Editor . 53
Compute . 54
Data-driven Interactors . 54
Debugging . 54
Distributed Processing . 54
Image Processing . 54
Importing Data . 55
Interface Control . 55
Looping . 55
Miscellaneous . 56
Probes . 57
Rendering . 57
Scattered Data . 58
Sequencer . 58

4.2 Sample Macros . 59

Chapter 5. Importing Data . 61
5.1 General Array Importer . 63

Describing the Data . 63
Creating a Header File . 66
Some Notes on General Array Importer Format 66

5.2 Importing Data: Header File Examples . 67

iv IBM Visualization Data Explorer: QuickStart Guide

Record Style: Single-Variable Data . 67
Record Style: Multivariable Data . 75
Columnar Style . 81

5.3 Header File Syntax: Keyword Statements 85
file . 86
grid . 87
points . 87
block . 88
dependency . 88
field . 88
format . 89
header . 89
interleaving . 90
layout . 92
majority . 92
recordseparator . 92
series . 93
structure . 94
type . 94
positions . 94
end . 96

5.4 Data Prompter . 96
For Future Reference . 97
Supported Formats . 97
Initial Dialog Box . 98
Simplified Data Prompter . 101
Full Data Prompter . 103

5.5 Data Prompter Browser . 109
Starting the Browser . 109
Browser Menu Bar . 109
Browser Text Window . 111
Browser Offset Area . 111

5.6 Using the Header File to Import Data . 111

Glossary . 113

Index . 117

 Contents v

vi IBM Visualization Data Explorer: QuickStart Guide

 Figures

1. Main features of Data Explorer . 1
2. Startup Data Explorer Window . 4
3. File selection dialog box . 5
4. Visual Program Editor Window (VPE) . 7
5. Image Window . 9
6. View Control Dialog Box . 11
7. Sequence Control Panel . 14
8. Control Panel with two Interactors. 15
9. Colormap Editor for .../example1.net . 18

10. Add Control Points Dialog Box . 19
11. Examples of Grid Types . 64
12. Examples of Data Dependency . 64
13. Row- versus Column-Majority Grids . 65
14. Block and Columnar Styles of Data Organization 66
15. Initial Data Prompter window . 99
16. Simplified Data Prompter . 102
17. Full Data Prompter . 105
18. File Browser Window . 110
19. Import Configuration Dialog Box . 112

 Copyright IBM Corp. 1991-1997 vii

viii IBM Visualization Data Explorer: QuickStart Guide

 Tables

1. Image Characteristics Controlled by the Colormap Editor 17

 Copyright IBM Corp. 1991-1997 ix

x IBM Visualization Data Explorer: QuickStart Guide

 Notices

Products, Programs, and Services . xii
Trademarks and Service Marks . xii
Copyright notices . xiii

 Copyright IBM Corp. 1991-1997 xi

Products, Programs, and Services
References in this publication to IBM* products, programs, or services do not imply
that IBM intends to make these available in all countries in which it operates. Any
reference to an IBM product, program, or service is not intended to state or imply
that only IBM’s product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM’s
intellectual property rights may be used instead. Evaluation and verification of
operation in conjunction with other products, except those expressly designated by
IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give the user any license
to those patents. License inquiries should be sent, in writing, to:

International Business Machines Corporation
IBM Director of Licensing
500 Columbus Avenue
Thornwood, New York 10594
USA

Trademarks and Service Marks
The following terms, marked by an asterisk (*) at their first occurrence in this
publication, are trademarks or registered trademarks of the IBM Corporation in the
United States and/or other countries.

AIX
IBM
IBM Power Visualization System
RISC System/6000
Visualization Data Explorer

The following terms, marked by a double asterisk (**) at their first occurrence in this
publication, are trademarks of other companies.

AViiON Data General Corporation
DEC Digital Equipment Corporation
DGC Data General Corporation
Graphics Interchange Format (GIF) CompuServe, Inc.
Hewlett-Packard Hewlett-Packard Company
HP Hewlett-Packard Company
iFOR/LS Apollo Computer, Inc.
Motif Open Software Foundation
NetLS Apollo Computer, Inc.
Network Licensing Software Apollo Computer, Inc.
OpenWindows Sun Microsystems, Inc.
OSF Open Software Foundation, Inc.
PostScript Adobe Systems, Inc.
X Window System Massachusetts Institute of Technology

xii IBM Visualization Data Explorer: QuickStart Guide

 Copyright notices
IBM Visualization Data Explorer contains software copyrighted as follows:

� E. I. du Pont de Nemours and Company

 Copyright 1997 E. I. du Pont de Nemours and Company

Permission to use, copy, modify, distribute, and sell this software and its
documentation for any purpose is hereby granted without fee, provided that the
above copyright notice appear in all copies and that both that copyright notice
and this permission notice appear in supporting documentation, and that the
name of E. I. du Pont de Nemours and Company not be used in advertising or
publicity pertaining to distribution of the software without specific, written prior
permission. E. I. du Pont de Nemours and Company makes no representations
about the suitability of this software for any purpose. It is provided “as is”
without express or implied warranty.

E. I. du Pont de Nemours and Company disclaims all warranties with regard to
this software, including all implied warranties of merchantability and fitness, in
no event shall E. I. du Pont de Nemours and Company be liable for any
special, indirect or consequential damages or any damages whatsoever
resulting from loss of use, data or profits, whether in an action of contract,
negligence or other tortious action, arising out of or in connection with the use
or performance of this software.

� National Space Science Data Center

 Copyright 1990-1994 NASA/GSFC

National Space Science Data Center
NASA/Goddard Space Flight Center
Greenbelt, Maryland 20771 USA
(NSI/DECnet -- NSSDCA::CDFSUPPORT)
(Internet -- CDFSUPPORT@NSSDCA.GSFC.NASA.GOV)

� University Corporation for Atmospheric Research/Unidata

 Copyright 1993, University Corporation for Atmospheric Research

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose without fee is hereby granted, provided that the
above copyright notice appear in all copies, that both that copyright notice and
this permission notice appear in supporting documentation, and that the name
of UCAR/Unidata not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission. UCAR
makes no representations about the suitability of this software for any purpose.
It is provided “as is” without express or implied warranty. It is provided with no
support and without obligation on the part of UCAR Unidata, to assist in its use,
correction, modification, or enhancement.

 � NCSA

NCSA HDF version 3.2r4
March 1, 1993

NCSA HDF Version 3.2 source code and documentation are in the public
domain. Specifically, we give to the public domain all rights for future licensing
of the source code, all resale rights, and all publishing rights.

 Notices xiii

We ask, but do not require, that the following message be included in all
derived works:

Portions developed at the National Center for Supercomputing Applications at
the University of Illinois at Urbana-Champaign, in collaboration with the
Information Technology Institute of Singapore.

THE UNIVERSITY OF ILLINOIS GIVES NO WARRANTY, EXPRESSED OR
IMPLIED, FOR THE SOFTWARE AND/OR DOCUMENTATION PROVIDED,
INCLUDING, WITHOUT LIMITATION, WARRANTY OF MERCHANTABILITY
AND WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE

� Gradient Technologies, Inc. and Hewlett-Packard Co.

 Copyright Gradient Technologies, Inc. 1991,1992,1993
 Copyright Hewlett-Packard Co. 1988,1990

June, 1993

UNIX is a registered trademark of UNIX Systems Laboratories, Inc.

Gradient is a registered trademark of Gradient Technologies, Inc.

NetLS and Network Licensing System are trademarks of Apollo Computer, Inc.,
a subsidiary of Hewlett-Packard Co.

� Sam Leffler and Silicon Graphics

 Copyright 1988-1996 Sam Leffler
 Copyright 1991-1996 Silicon Graphics, Inc.

Permission to use, copy, modify, distribute, and sell this software and its
documentation for any purpose is hereby granted without fee, provided that (i)
the above copyright notices and this permission notice appear in all copies of
the software and related documentation, and (ii) the names of Sam Leffler and
Silicon Graphics may not be used in any advertising or publicity relating to the
software without the specific, prior written permission of Sam Leffler and Silicon
Graphics.

THE SOFTWARE IS PROVIDED “AS-IS” AND WITHOUT WARRANTY OF
ANY KIND, EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT
LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE
FOR ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL
DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED
OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

 � Compuserve Incorporated

The Graphics Interchange Format is the copyright property of Compuserve
Incorporated. GIF(SM) is a Service Mark property of Compuserve Incorporated.

� Integrated Computer Solutions, Inc.

Motif Shrinkwrap License

READ THIS LICENSE AGREEMENT CAREFULLY BEFORE USING THE
PROGRAM TAPE, THE SOFTWARE (THE “PROGRAM”), OR THE
ACCOMPANYING USER DOCUMENTATION (THE “DOCUMENTATION”).

xiv IBM Visualization Data Explorer: QuickStart Guide

THIS AGREEMENT REPRESENTS THE ENTIRE AGREEMENT
CONCERNING THE PROGRAM AND DOCUMENTATION POSAL,
REPRESENTATION, OR UNDERSTANDING BETWEEN THE PARTIES WITH
RESPECT TO ITS SUBJECT MATTER. BY BREAKING THE SEAL ON THE
TAPE, YOU ARE ACCEPTING AND AGREEING TO THE TERMS OF THIS
AGREEMENT. IF YOU ARE NOT WILLING TO BE BOUND NY THE TERMS
OF THIS AGREEMENT, YOU SHOULD PROMPTLY RETURN THE
CONTENTS, WITH THE TAPE SEAL UNBROKEN; YOUR MONEY WILL BE
REFUNDED.

1. License: ISC remains the exclusive owner of the Program and the
Documentation. ICS grant to Customer a nonexclusive, nontransferable (except
as provided herein) license to use, modify, have modified, and prepare and
have prepared derivative works of the Program as necessary to use it.

2. Customer Rights: Customer may use, modify and have modified and prepare
and have prepared derivative works of the Program in object code form as is
necessary to use the Program. Customer may make copies of the Program up
to the number authorized by ICS in writing, in advance. There shall be no fee
for Statically linked copies of the Motif libraries. Statically linked copies are
object code copies integrated within a single application program and
executable only with that single application. Run Time copies require payment
of ICS' then applicable fee. Run Time copies are copies which include any
portion of a linkable object file (“.o” file), library file (“.a” file), the window
manager (mwm manager), the U.I.L. compiler, a shared library, or any tool or
mechanism that enables generation of any portion of such components; other
copies will require payment of ICS' applicable fees. TRANSFERS TO THIRD
PARTIES OF COPIES OF THE LICENSED PROGRAMS, OR OF
APPLICATIONS PROGRAMS INCORPORATING THE PROGRAM (OR ANY
PORTION THEREOF), REQUIRE ICS' RESELLER AGREEMENT. Customer
may not lease or lend the Program to any party. Customer shall not attempt to
reverse engineer, disassemble or decompile the program.

3. Limited Warranty: (a) ICS warrants that for thirty (30) days from the delivery
to Customer, each copy of the Program, when installed and used in
accordance with the Documentation, will conform in all material respects to the
description of the Program's operations in the Documentation. (b) Customer's
exclusive remedy and ICS' sole liability under this warranty shall be for ICS to
attempt, through reasonable efforts, to correct any material failure of the
Program to perform as warranted, if such failure is reported to ICS within the
warranty period and Customer, at ICS' request, provides ICS with sufficient
information (which may include access to Customer's computer system for use
of Customer's copies of the Program by ICS personnel) to reproduce the defect
in question; provided, that if ICS is unable to correct any such failure within a
reasonable time, ICS may, at its sole option, refund to the Customer the license
fee paid for the Product. (c) ICS need not treat minor discrepancies in the
Documentation as errors in the Program, and may instead furnish correction to
the Program. (d) ICS does not warrant that the operation of the Program will be
uninterrupted or error-free, or that all errors will be corrected. (e) THE
FOREGOING WARRANTY IS IN LIEU OF, AND ICS DISCLAIMS, ALL OTHER
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ANY
PARTICULAR PURPOSE. IN NO EVENT WILL ICS BE LIABLE FOR ANY
INCIDENTAL OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT

 Notices xv

LIMITATION LOST PROFITS, ARISING OUT OF THE USE OR INABILITY TO
USE THE PROGRAM OR DOCUMENTATION.

4. Term and Termination: The term of this agreement shall be indefinite;
however, this Agreement may be terminated by ICS in the event of a material
default by Customer which is not cured within thirty (30) days after the receipt
of notice of such breech by ICS. Customer may terminate this Agreement at
any time by destruction of the Program, the Documentation, and all other
copies of either of them. Upon termination, Customer shall immediately cease
use of, and return immediately to ICS, all existing copies of the Program and
Documentation, and cease all use thereof. All provisions hereof regarding
liability and limits thereon shall survive the termination of this the Agreement.

5. U.S. GOVERNMENT LICENSES. If the Product is provided to the U.S.
Government, the Government acknowledges receipt of notice that the Product
and Documentation were developed at private expense and that no part of
either of them is in the public domain. The Government acknowledges ICS'
representation that the Product is “Restricted Computer Software” as defined in
clause 52.227-19 of the Federal Acquisition Regulations (the “FAR” and is
“Commercial Computer Software” as defined in Subpart 227.471 of the
Department of Defense Federal Acquisition Regulation Supplement (the
“DFARS”). The Government agrees that (i) if the software is supplied to the
Department of Defense, the software is classified as “Commercial Computer
Software” . and that the Government is acquiring only “Restricted Rights” in the
software and its documentation as that term is defined in Clause
252.227-7013(c)(1) of the DFARS and (ii) if the software is supplied to any unit
or agency of the Government other than the Department of Defense, then
notwithstanding any other lease or license agreement that may pertain to, or
accompany the delivery of, the computer software and accompanying
documentation, the rights of the Government regarding its use, reproduction
and disclosure are as set forth in Clause 52.227-19(c)(2) of the FAR. All copies
of the software and the documentation sold to or for use by the Government
shall contain any and all notices and legends necessary or appropriate to
assure that the Government acquires only limited right in any such
documentation and restricted rights in any such software.

6. Governing Law: This license shall be governed by and construed in
accordance with the laws of the Commonwealth of Massachusetts as a contract
made and performed therein.

� OMRON Corporation, NTT Software Corporation, and MIT

 Copyright 1990, 1991 by OMRON Corporation, NTT Software Corporation,
and Nippon Telegraph and Telephone Corporation
 Copyright 1991 by the Massachusetts Institute of Technology

Permission to use, copy, modify, distribute, and sell this software and its
documentation for any purpose is hereby granted without fee, provided that the
above copyright notice appear in all copies and that both that copyright notice
and this permission notice appear in supporting documentation, and that the
names of OMRON, NTT Software, NTT, and M.I.T. not be used in advertising
or publicity pertaining to distribution of the software without specific, written
prior permission. OMRON, NTT Software, NTT, and M.I.T. make no
representations about the suitability of this software for any purpose. It is
provided “as is” without express or implied warranty.

xvi IBM Visualization Data Explorer: QuickStart Guide

OMRON, NTT SOFTWARE, NTT, AND M.I.T. DISCLAIM ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL
OMRON, NTT SOFTWARE, NTT, OR M.I.T. BE LIABLE FOR ANY SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE
USE OR PERFORMANCE OF THIS SOFTWARE.

 Notices xvii

xviii IBM Visualization Data Explorer: QuickStart Guide

 About

About This Guide

A Suggestion on Where to Start . xx
A Note on the Window System . xx
Typographic Conventions . xxi
Related Publications and Sources . xxi

IBM Publications . xxi
Non-IBM Publications . xxi
Other sources of information . xxii

 Copyright IBM Corp. 1991-1997 xix

This guide presents a “hands on” introduction to Data Explorer and is designed to
help you start working with it immediately.

� Chapter 1, “A Very Quick Overview” on page 1, is a 2-page summary of the
Data Explorer system and its main features. The purpose of this overview is to
give you a clear general outline of the Data Explorer tools and interfaces and of
their functions in the process of visualizing data.

� Chapter 2, “Tutorial I: Using Data Explorer” on page 3, covers most of the
basic functions of Data Explorer—at a level accessible to any new user. It
briefly introduces the Visual Program Editor (VPE) before concentrating on the
Image Window—the user interface for directly presenting and manipulating the
images generated by visual programs.

� Chapter 3, “Tutorial II: Editing and Creating Visual Programs” on page 21,
uses step-by-step examples to illustrate the use of the VPE in the more
advanced tasks of creating and modifying visual programs. (Chapter 3,
“Tutorial II: Editing and Creating Visual Programs” on page 21 also includes a
list of the sample visual programs supplied with Data Explorer.)

� Chapter 5, “Importing Data” on page 61, explains how to import data into Data
Explorer, using the Data Prompter and its companion file-viewing facility, the
Data Browser.

A Suggestion on Where to Start
If you have never used Data Explorer before, read Chapter 1, “A Very Quick
Overview” on page 1 and then start on the tutorials. If you are familiar with Data
Explorer, you may want to focus on sample programs that involve the kind of
visualization tasks you encounter in your own work. For that purpose, Chapter 4,
“Sample Visual Programs and Sample Macros” on page 49, lists the sample visual
programs and macros supplied with Data Explorer.

You can follow the tutorials in this Guide or on-line. To use the on-line version,

� type dx -tutor and press the Enter key, or
� Choose Run Tutorial from the Data Explorer Startup window.

A Note on the Window System
This Guide assumes that you have some familiarity with your operating system,
with the X Window System** being used, and with OSF**/Motif**. For more
information, if needed, consult the appropriate window system documentation.

Any reference to the X Window System means any window server that supports the
X11 protocol, including Sun’s OpenWindows**.

The Motif window manager (mwm) has been used in some figures and examples in
this Guide. If you are using another window manager, the title bars and window
borders may differ slightly from those shown.

xx IBM Visualization Data Explorer: QuickStart Guide

 About

 Typographic Conventions
Boldface Identifies commands, keywords, files, directories, messages from the

system, and other items whose names are defined by the system.

Italic Identifies parameters with names or values to be supplied by the user.

Monospace Identifies examples of specific data values and text similar to what you
might see displayed or might type at a keyboard or that you might write
in a program.

Related Publications and Sources

 IBM Publications
� IBM Visualization Data Explorer User’s Guide, SC38-0496

Details the main features of Data Explorer, including the data model, data
import, the user interface, the Image window, and the visual program editor.
and the scripting language. Of particular interest to programmers: chapters on
the data model and the scripting language.

� IBM Visualization Data Explorer User’s Reference, SC38-0486

Contains detailed descriptions of Data Explorer’s tools.

Note: Consult this reference if you are creating visual programs or scripts.

� IBM Visualization Data Explorer Programmer’s Reference, SC38-0497

Contains detailed descriptions of the Data Explorer library routines.

Note: Consult this reference if you are writing your own modules for Data
Explorer.

 Non-IBM Publications
The following treat various aspects of computer graphics and visualization:

Adobe Systems Incorporated, PostScript Language Reference Manual, 2nd
Ed., Addison-Wesley Publishing Company, Massachusetts, 1990.

Aldus Corporation and Microsoft Corporation, Tag Image File Format
Specification, Revision 5.0, Aldus Corporation, Washington, 1988.

Arvo, Jim, ed., Graphics Gems II, Academic Press, Inc., Boston,
Massachusetts, 1991.

Foley, J.D., van Dam, A., Feiner, S.K., Hughes, J.F., Computer Graphics:
Principles and Practice, Addison-Wesley Publishing Company; Massachusetts,
1990.

Friedhoff, Richard M., and Benzon, William, Visualization: The Second
Computer Revolution, New York, Harry N. Abrams, Inc., 1989.

Glassner, Andrew, ed., Graphics Gems, Academic Press, Inc., Boston,
Massachusetts, 1990.

Hill, F.S., Jr., Computer Graphics. Macmillan Publishing Company, New York,
1990.

 About This Guide xxi

Kirk, David, ed., Graphics Gems III, Academic Press, Inc., Boston,
Massachusetts, 1992.

Robin, Harry, The Scientific Image: from cave to computer, Harry N. Abrams,
Inc., New York, 1992.

Rogers, David F., Procedural Elements for Computer Graphics, McGraw-Hill
Book Company, New York, 1985.

Rogers, David F. and Adams, J.Alan, Mathematical Elements for Computer
Graphics, 2nd Ed., New York, McGraw-Hill Book Company, 1990.

SIGGRAPH Conference Proceedings, Association for Computing Machinery,
Inc.: A Publication of ACM SIGGRAPH, New York, various years.

Tufte, Edward, The Visual Display of Quantitative Information, Graphics Press,
Cheshire, Connecticut, 1983.

Other sources of information
For additional ideas, consult the “DX Repository,” available through anonymous
FTP (ftp.tc.cornell.edu. in directory pub/Data.Explorer), and gopher
(ftp.tc.cornell.edu. port 70). This public software resource includes information
and visual programs contributed by Data Explorer users from around the world.
We encourage you to contribute your innovations and ideas to the Repository, in
the form of new modules, macros, visual programs, and tips and tricks you discover
as you learn and master Data Explorer.

On the Internet, the newsgroup comp.graphics.apps.data-explorer is used by
customers around the word to share information and ask questions. This
newsgroup is also followed by Data Explorer developers.

If you have access to the World Wide Web, you can find the Data Explorer home
page at http://www.almaden.ibm.com/dx/.

xxii IBM Visualization Data Explorer: QuickStart Guide

 Overview

Chapter 1. A Very Quick Overview

Data Explorer is a system of tools and user interfaces for visualizing data. In
general terms the visualization of data can be considered a 3-stage process:

1. Describing and importing data
2. Processing the data through a visualization program
3. Presenting the resulting image.

The simple diagram below shows where the chief tools and interfaces of Data
Explorer fit into this process. The numbered list that follows Figure 1 is keyed to
the diagram. The list items briefly describe the roles of these features in Data
Explorer visualization and give references to the relevant Data Explorer
documentation.

(1) Data Model

(2) Data Prompter

(3) Data Browser

(4) Scripting Language

data visualization
program

(5) Visual Program Editor

(6) Modules

(7) Module Builder

(8) Image Window

(9) Control Panels

(10) Display Module

Image

Figure 1. Main features of Data Explorer. Tools and interfaces are positioned to show their
general place in the visualization process. All those listed below the data→image sequence
are interactive interfaces except for the “modules” (6 and 10), which are directly accessible
and manipulable in the Visual Program Editor (5). Numbers correspond to those in the
accompanying list. Underlined features are discussed in this Guide. Features not
underlined are discussed in other documentation, cited in the list.

(1) Data Model
The set of definitions, rules, and conventions used to describe Data Explorer
entities (including data fields, geometrical objects, and images).

See IBM Visualization Data Explorer User’s Guide.

(2) Data Prompter
A user interface for describing data to be imported into Data Explorer.

See 3.3, “Importing Data” on page 25 and 5.4, “Data Prompter” on page 96
in this Guide.

(3) Data Browser
A user interface for viewing a data file, determining the layout and
organization of the data it contains, and transferring this information to the
Data Prompter (2).

See 5.5, “Data Prompter Browser” on page 109 in this Guide.

(4) Scripting Language
A simple, high-level language for creating visualization programs. It can also
be used directly in a command mode to perform various tasks. Visual
programs—i.e., the visualization programs displayed in the Visual Program
Editor window (5) as “networks” of module icons—are also written in the
scripting language. A visual program constructed in this window by the user
is translated into the same language when it is saved to disk.

 Copyright IBM Corp. 1991-1997 1

See IBM Visualization Data Explorer User’s Guide.

(5) Visual Program Editor (VPE)
A graphical user interface for creating and modifying visual programs
(networks). Programs created with this editor are translated into the scripting
language (4) by Data Explorer and are stored in that form.

See 3.1, “Editing a Visual Program: The Basics” on page 22 in this Guide;
see also IBM Visualization Data Explorer User’s Guide.

(6) Modules
The “building blocks” (visualization “tools”) that constitute a visual program
network. They can be directly accessed and manipulated in the Visual
Program Editor (5).

See IBM Visualization Data Explorer User’s Reference.

(7) Module Builder
A user interface for creating customized modules to be used in visual
programs.

See IBM Visualization Data Explorer Programmer’s Reference.

(8) Image Window
An interactive window for viewing and modifying the presentation of the
image produced by a visual program.

See 2.5, “Controlling the Appearance of an Object: The Image Window” on
page 10 in this Guide.

(9) Control Panels
A user interface for changing the parameter values used by a visual
program.

See “Using Control Panels” on page 15 in this Guide; see also IBM
Visualization Data Explorer User’s Guide.

(10) Display Module
An alternative to the Image window (8).

See IBM Visualization Data Explorer User’s Reference.

2 IBM Visualization Data Explorer: QuickStart Guide

Chapter 2. Tutorial I: Using Data Explorer

 Tutorial I

2.1 Starting Data Explorer . 4
2.2 Accessing the Tutorials . 5
2.3 Where To Begin . 6
2.4 Opening and Executing a Visual Program . 6

Opening a Visual Program . 6
Executing a Visual Program . 8

2.5 Controlling the Appearance of an Object: The Image Window 10
Size, View, and AutoAxes . 10
Using the Sequencer . 14
Using Control Panels . 15
Using the Colormap Editor . 16

 Copyright IBM Corp. 1991-1997 3

2.1 Starting Data Explorer
To start Data Explorer on a workstation:

1. Log on to your workstation.
2. Make sure that the X Window system is running with Motif or the appropriate

window manager.
3. Enter on the command line:

dx

The Startup Data Explorer window will appear, as shown in Figure 2.

Figure 2. Startup Data Explorer Window

From the Startup window you can choose to import data, run previously written
visual programs, create or edit visual programs, run the Data Explorer tutorial,
or run one of a set of sample programs.

4 IBM Visualization Data Explorer: QuickStart Guide

Figure 3. File selection dialog box

 Tutorial I

For Future Reference: Context-Sensitive Help

Context-Sensitive Help is available in the Help pull-down menu of the VPE
window. Selecting this item creates a cursor in the shape of a question mark,
which can then be placed on a tool icon or other feature in the window.
Releasing the mouse button invokes the appropriate Help window.

2.2 Accessing the Tutorials
Tutorials I and II are both on line and can be accessed in one of three ways:

� Start Data Explorer with the command:

dx

then click on Run Tutorial in the Data Explorer Startup window (see Figure 2
on page 4).. (It is assumed for the rest of the tutorial that this is the method
you have used.)

� Start Data Explorer with the command:

dx -tutor

� Choose Tutorial in the Help menu of the Visual Program Editor.

In the Tutorial window, you can:

� Directly access any topic, subtopic, subsubtopic, or related item that is “boxed”,
simply by clicking on the boxed area.

� Scroll through information that extends beyond the length of the window (using
the vertical scroll bar on the right side of the window).

 Chapter 2. Tutorial I: Using Data Explorer 5

� Return to a topic that you have viewed during the current session, by moving
the mouse cursor into the tutorial window and holding the right-hand mouse
button: A list of the topics you have viewed appears. While holding the mouse
button, move the pointer to the desired topic in the list and release the button.

� Return to the previous topic, by clicking on Go Back at the bottom of the tutorial
window.

� Exit the tutorial by clicking on Quit at the bottom of the tutorial window.

2.3 Where To Begin
Tutorials I and II are designed so that you can proceed from one topic to another in
whatever order you choose.

If you have not used Data Explorer before, we recommend that you start here with
Tutorial I, which will quickly introduce you to many of the basic features of the user
interface, as well as to many of the most commonly used Data Explorer functions.

If you already know how to run Data Explorer and want more information on how to
edit and create visual programs, you can start with Chapter 3, “Tutorial II: Editing
and Creating Visual Programs” on page 21 You may also start directly with any of
the topics listed at the beginning of that tutorial.

If you need to learn how to start Data Explorer, see 2.1, “Starting Data Explorer” on
page 4.

When you have completed Tutorial I, you should have no difficulty:

� Running a visual program and manipulating objects in the Image window.
� Exploring Data Explorer functions.

2.4 Opening and Executing a Visual Program
This section will show you how to:

� Open a visual program.
� Execute that program to display an object in the Image window.

Opening a Visual Program
A visual program must be opened before it can be executed:

1. From the Data Explorer Startup window choose Edit Visual Program. A file
selection dialog box appears (see Figure 3 on page 5). You can also get to
the file selection dialog by choosing Run Visual Program in the Startup window
or, once the visual program editor or image window has appeared, by selecting
File in the menu bar of the window and then selecting Open Program.

2. Double click on any part of the Filter field at the top of the dialog box. Any
text in that field will appear against the background of a black highlight bar.

 3. Type

/usr/lpp/dx/samples/tutorial/\.net

(The cursor automatically moves to the beginning of the text line as soon as
you start typing, and the highlighted text and highlight bar disappear.)

6 IBM Visualization Data Explorer: QuickStart Guide

Note: The file extension .net (for network) is the default for Data Explorer
visual programs. In Data Explorer, “network” is a term for visual program.

4. Press Enter or click on the Filter pushbutton at the bottom of the dialog box.
The Selection field just above this button now displays the directory path
name. An alphabetized list of the .net files in the directory appears in the
Files field.

Note: If the path name you typed is invalid (the wrong list or no list of files
appears), you can edit it: position the mouse cursor at the point where you
want to start editing and click once before beginning to type.

If the highlight bar reappears, retyping the entire path name is still
unnecessary: again, position the cursor and click once. The highlight bar
disappears, but the path name remains, with the cursor at the selected position.

5. Use the scroll bar to move to the bottom of the list in the Files field. Click on
example1.net to highlight the file name. The Selection field now displays the
file’s full path name.

 Tutorial I

Figure 4. Visual Program Editor Window (VPE). This window consists of two palettes and a “canvas.” The palettes
list categories of tools (or modules, top left) and individual tools in a selected category (bottom left). The canvas is the
area for creating and editing visual programs (“networks”). as shown here, a network consists of tool (module) icons
and connecting lines (“arcs”). The name of the network program appears in the title bar at the top of the window.
(Use of the VPE is described in Chapter 3, “Tutorial II: Editing and Creating Visual Programs” on page 21.)

 Chapter 2. Tutorial I: Using Data Explorer 7

6. Click on OK to open the example1.net visual program: the dialog box closes; a
“network” of modules and connecting lines appears in the “canvas” area of the
VPE window; and the full path name of the program appears in the title bar of
the window. Opening is completed.

For a short description of example1.net, click on Help at the right side of the menu
bar and select Application Comment in the pull-down menu.

For Future Reference

� Double clicking on a name in the Files field also opens a program.
� It is not necessary to clear the canvas of one program before opening

another. Just open the new program.
� If for any reason you want to start over again with a clean canvas—without

closing Data Explorer: click on File in the menu bar and select New in the
pull-down menu. This sequence clears the canvas of the previous program
network and any associated windows.

Executing a Visual Program
To execute a visual program like example1.net (once it has been opened):

1. Click on Execute in the menu bar of the VPE window.

Note: A visual program can be executed from any window that has Execute in
its menu bar.

2. Select Execute Once in the pull-down menu. Execution (which may take
several seconds) is indicated by the highlighted Execute in the menu bar and
the brief highlighting of various icons in the canvas area. The window that
appears displays the image of a water molecule (Figure 5 on page 9).

8 IBM Visualization Data Explorer: QuickStart Guide

Figure 5. Image Window. The window shown here displays the image generated by the
visual program /usr/lpp/dx/samples/tutorial/example1.net.

 Tutorial I

Once an object appears in the Image window, you can do a number of things
with it, including:

� Changing the view of the object (see 2.5, “Controlling the Appearance of an
Object: The Image Window” on page 10).

� Editing the visual program that generates the image (see 3.1, “Editing a
Visual Program: The Basics” on page 22).

� Saving and Printing its image, using the File pull-down menu in the menu
bar (see “Saving and Printing Images” on page 47).

For Future Reference

1. Many of the options in pull-down menus can be invoked by “accelerator”
keyboard sequences. In the menus, these “shortcuts” appear next to the
corresponding options. For a complete list, see Appendix G, “Accelerator
Keys” on page 315 in IBM Visualization Data Explorer User’s Guide.

2. The editor window can be invoked directly with the command:

dx -edit [program path name]

 Chapter 2. Tutorial I: Using Data Explorer 9

2.5 Controlling the Appearance of an Object: The Image Window
Controlling the appearance of an object means being able to control various
aspects of its visual image on the screen as well as the data used in generating
that image. This section deals briefly with control of the following aspects:

� the object’s appearance (size and the “view” displayed in the Image window)
� the sequence in which object images are presented
� the input from which an object’s image is generated
� the color(s) of an object
� the placement of axes around an object.

Note: Throughout this document, the term “Image window” refers to the window
generated by Image (not by Display). Both of these modules are described in IBM
Visualization Data Explorer User’s Reference. Also see IBM Visualization Data
Explorer User’s Guide for a comprehensive treatment of the user interface.

Size, View, and AutoAxes
In Data Explorer the most easily controlled feature of an object in the Image
window is its size, which can be changed by direct manipulation of the window.
Other important features of its appearance are controlled through two options in the
Options pull-down menu in the Image window menu bar: View Control and
AutoAxes.

 Size Control
To change the size of an image, simply change the size of the Image window.
Holding down the left mouse button:

� Drag a horizontal border to shrink or expand the window vertically.
� Drag a vertical border to shrink or expand the window horizontally.
� Drag a corner to shrink or expand a window vertically and horizontally.

Notes:

1. Reset in the Options pull-down menu restores the original view of the object but
not the original size of the window.

2. If your visual program uses the Display rather than the Image tool, the image
size can be changed only by changing the resolution parameter of Camera or
AutoCamera (see “Camera” on page 49 and “AutoCamera” on page 31 in IBM
Visualization Data Explorer User’s Reference for descriptions of these tools.)

 View Control
The View Control dialog box allows you to control (among other aspects of an
object) the following:

 � Viewing direction
 � Rotation
� Field of view (zooming and panning).

To open this dialog box, select View Control... in the Options pull-down menu in
the Image window.

Controlling the Viewing Direction: To change the viewing direction, select Set
View in the dialog box (see Figure 6 on page 11). The list of choices that appears
includes 7 directional views of the object (Top, Bottom, etc.). Because these “head

10 IBM Visualization Data Explorer: QuickStart Guide

Figure 6. View Control Dialog Box. This dialog box is activated from the Options pull-down
menu of the Image window (see Figure 5 on page 9).

 Tutorial I

on” views show only “one side” of an object (tending to flatten its appearance), the
list also offers 7 corresponding “off” views (Off Top, Off Bottom, etc.).

When you select a view of an object, the image is automatically altered (note the
highlighted Execute in the menu bar).

Controlling Rotation: To rotate an object in the Image window, first click on the
Mode option box (initially displaying None) and then select Rotate from the displayed
list. Rotate becomes the current mode and a set of axes appears in the lower
right-hand corner of the window. You can rotate the object in two dimensions
(clockwise and counterclockwise) or in three by rotating the axes. You can also
cause the object to rotate “continuously” (i.e., in coordination with the axes).

2-D Rotation
Position the mouse cursor in the Image window and hold down the right
mouse button: clockwise movement of the mouse produces clockwise
rotation of the axes; counterclockwise movement produces counterclockwise
rotation. When the mouse button is released, the object rotates by the same
amount as the axes have, assuming the same relative position in the
window.

3-D Rotation
Position the mouse cursor in the Image window and hold down the left
mouse button: the mouse now behaves like a track ball and the axes move
accordingly. When the mouse button is released, the object rotates by the
same amount as the axes have, assuming the same relative position in the
window.

Continuous Rotation
Once you have selected Rotate mode, you can make the object rotate along
with the axes: select Execute in the menu bar and then Execute on Change
in the pull-down menu (Execute is highlighted). The image is now replaced
by a dot representation of the object (see rendering options in IBM
Visualization Data Explorer User’s Guide). The movement of the mouse
(and the axes) is reflected directly and continuously in the movement of this
dot version.

 Chapter 2. Tutorial I: Using Data Explorer 11

Note: Movement of the axes is essentially synchronous with movement of
the mouse, but the “response time” of the dot version may vary, depending
on the machine and configuration.

Notes:

1. Turn off Execute on Change by selecting End Execution in the Execute
pull-down menu.

2. To restore the original view of the object, select Reset in the View Control
dialog box.

Controlling the Field of View: Zoom mode allows you to enlarge an object,
making it appear closer (zooming in) or to reduce it, making it appear more distant
(zooming out).

Pan/Zoom mode allows you to change the center of focus while zooming in or out.

Zooming in:

1. Select Zoom in the Mode option list of the dialog box.
2. To zoom in, position the mouse cursor in the Image window and hold down the

left mouse button. An overlay rectangle appears.
3. You can enlarge or shrink this rectangle by moving the mouse cursor away

from or toward the center of the window.
4. When you release the mouse button, the area of the rectangle expands to fill

the Image window, making the object appear nearer.

Note: If you simply click the mouse button instead of holding it down, the
overlay rectangle will disappear before you can change its dimensions. The
modified image of the object will be based on that rectangle. (The size of the
rectangle and thus the degree of “zoom” depends on the distance of the cursor
from the center of the window when you first press the mouse button.)

5. To cancel the effect of the most recent command, select Undo in the dialog box
or in the Options pull-down menu. You can also repeat a command that has
been “undone,” by selecting Redo.

Note: Since executed commands are maintained in a stack, you can undo
those commands one by one and redo them, too.

6. Reset in the dialog box (or in the Options pull-down) menu restores the original
view: (e.g., front) of the object.

Zooming out:

1. Follow the procedure described for zooming in, but use the right mouse button.
2. When you release the mouse button, the area of the Image window is reduced

to the area of the rectangle, making the object appear more “distant”.

Panning and Zooming out:

1. Select Pan/Zoom in the Mode option list of the dialog box.

2. Position the mouse cursor at the point in the Image window that you want as
the center of the new “picture,” and press the appropriate mouse button (left to
zoom in or right to zoom out).

3. Move the mouse in any direction to display the overlay rectangle. The
“zooming” behavior of the object with respect to the rectangle will be the same
as that just described.

4. To restore the original view of the object, select Reset in the dialog box.

12 IBM Visualization Data Explorer: QuickStart Guide

5. Leave the View Control dialog box open for the next exercise.

 AutoAxes Configuration Tutorial I

The AutoAxes Configuration dialog box allows you to generate a set of axes for an
object in the Image window and to specify some of its characteristics.

1. Click on Options in the menu bar of the Image window and then select
AutoAxes in the pull-down menu. The AutoAxes Configuration dialog box
appears.

Note: To display additional options, click on the Expand button at the bottom
of the dialog box. For purposes of this tutorial, you will not be changing any
AutoAxes options. For more information, see “AutoAxes” on page 27 in IBM
Visualization Data Explorer User’s Reference.

2. Click on the Enabled toggle button (at the top of the dialog box) to select the
AutoAxes option. The button is now activated.

3. Click on OK or Apply at the bottom of the dialog box to confirm the selection.

Notes:

a. OK closes the dialog box; Apply does not.
b. Selection of Enabled and OK or Apply is necessary but not sufficient to

activate the AutoAxes option (see next step).

4. Select Execute in the menu bar and then Execute Once in the pull-down menu.

The object now appears in an axes box. Because the view is “head on,” the
box appears to be 2-dimensional. For Diagonal or any of the “Off” views,
however, it appears fully 3-dimensional (see next step).

5. To change the view of the object, select another (e.g., Diagonal) from the Set
View pull-down list in the View Control... dialog box. The view changes to
Diagonal (note that the axes box changes as well).

6. To remove the axes box from the window:

a. Deactivate the Enabled toggle button in the AutoAxes Configuration dialog
box by clicking on it.

b. Click on OK or Apply.

c. Again, execute the program (unless it is already in Execute on Change
mode). The axes box disappears.

d. To restore the original view of the object, click on Reset in the View
Control dialog box

7. Close the View Control dialog box (by clicking on Close) and the AutoAxes
Configuration dialog box (by clicking on Cancel).

 Chapter 2. Tutorial I: Using Data Explorer 13

Figure 7. Sequence Control Panel. The first two buttons at top left are Loop and
Palindrome. The others are: Step (%||5), Counter (...), Back (%), Forward (5), Stop (■), and
Pause (||).

Using the Sequencer
The Sequencer allows you to “animate” a visual image and is very easy to use.
The process is rather like running a video cassette tape: You can play it forward or
backward, stop it, pause, and so on. (If you look at the canvas of the VPE window,
you will see that the Sequencer is one of the components of the example1.net
network.)

1. Click on Execute in the menu bar of the Image window and then on Sequencer
in the pull-down menu to display the Sequence Control panel (Figure 7).

2. Click on the Forward button (5) to start the animation sequence.

Note: A Sequencer button appears recessed when it is activated.

As the sequence proceeds, the Counter button (...) displays the corresponding
“frame” number. At the end of the execution cycle, the window displays the
final image in the sequence, the Counter displays the final frame number, and
the Forward button is deactivated (not recessed).

3. Click on the Back button (%) to run the same sequence in reverse. At the end
of the execution cycle, the window displays the original image, the Counter
displays “0”, and the Back button is deactivated.

4. Click on the Step button (%||5) to activate it. You can now proceed through a
sequence frame by frame in either direction, using Back and Forward.

Note: In Step mode, the Back and Forward buttons appear as %|| and ||5
respectively.

5. Click on Step again (to deactivate it) and then on the Loop button at the top left
(marked by a single “looped” arrow). Now, if you click on Back or Forward, the
sequence will repeat itself until you interrupt it (see the next four steps).

6. Click on the Pause button (||) to suspend the sequence.

7. Continue the sequence from this point or reverse it, using Back or Forward.

8. Click on the Stop button (■). The sequence halts (the Loop button remains
activated).

Note: The Stop button does not affect the status of the Loop, Palindrome, or
Step button.

9. Click on Back or Forward. A new sequence starts again from the beginning
(i.e., a “stopped” sequence cannot be continued or reversed from the point at
which you interrupted it).

14 IBM Visualization Data Explorer: QuickStart Guide

10. Click on Loop. The sequence continues to its end before stopping and the
Loop button is deactivated (compare with the Stop button).

11. Click on the Palindrome button (between Loop and Step). With this option
activated, you can use the Back (or Forward) button to run a sequence through
one back-and-forth cycle (from first frame to last and back to first, or vice
versa). Note that if you activate this function at some intermediate frame in the
sequence, only the remainder of the cycle is executed.

12. To restore the original view of the object, click on Reset in the View Control
dialog box.

13. Close the Sequence Control panel (double click on the window menu button in
top left corner of the frame).

For Future Reference

You can activate both the Loop and Palindrome buttons together. The
back-and-forth cycle will repeat itself until you deactivate one them or click on
the Stop button.

 Tutorial I

Using Control Panels
Control panels give you direct control of inputs to a visual program. The control
panel included with example1.net, for example, allows you to incorporate a colored
plane in the image of an object and to decide the number of contour lines to be
displayed in that plane. To open the control panel:

1. Select Windows in the menu bar of the Image window.

2. Select Open All Control Panels in the pull-down menu. The control panel
appears (see Figure 8).

Figure 8. Control Panel with two Interactors..

 Chapter 2. Tutorial I: Using Data Explorer 15

To display a colored plane:

1. Click on off in the Show MapToPlane interactor.

2. Select on when it appears in the selection list.

3. Select Execute in the menu bar of either the control panel or the Image
window.

4. Select Execute on Change in the pull-down menu. The visual program
reexecutes and the colored plane is incorporated as part of the current image.

5. To specify the number of contour lines, click on one of the two stepper
arrowheads in the number of contour lines interactor (right to increase the
number, left to decrease it). Since Data Explorer is in Execute on Change
mode, the number of contours changes when the number in the interactor
changes.

Notes:

a. The second interactor has no effect if the first interactor is off.

b. Depending on opacity and other factors, some of the contour lines “inside”
the object may not be visible.

6. Click on on in the Show MapToPlane interactor and then select off when it
appears. The plane disappears and the original image is restored.

Using the Colormap Editor
The example1.net visual program includes a Colormap Editor for controlling the
color characteristics of data values represented in the visual image. The editor also
controls the opacity of those values (see Table 1 on page 17).

Opening the Colormap Editor:
1. Select Open All Colormap Editors in the Windows pull-down menu of the Image

window. Now changes made in the Colormap Editor (Figure 9 on page 18) will
be reflected both in the editor and in the image. (Data Explorer should still be
in Execute on Change mode from the preceding exercise. If not, select that
mode in any Execute pull-down menu.) For example:

2. Move the mouse cursor into the large rectangle under the Hue label button (the
cursor changes from an arrow to a circle with sight marks).

3. Use the left mouse button to drag the control point (the small box in the upper
left-hand corner of the rectangle) horizontally to a position under Hue. The color
column to the left changes as the point moves.

Note: The Hue button is automatically activated when the mouse button is
pressed with the cursor positioned in the Hue rectangle.

4. Release the mouse button. Color changes appear in the object.

5. Drag the control point back to its original position and release the mouse
button. The color column and the object return to their original states.

16 IBM Visualization Data Explorer: QuickStart Guide

Table 1. Image Characteristics Controlled by the Colormap Editor. The numerical range
used in specifying discrete values of a characteristic is 0.0–1.0. Corresponding Colormap
values at the limits and middle of a range are also listed.

Before going any further, you should familiarize yourself briefly with the Colormap
Editor (Figure 9 on page 18). Note that the four labeled rectangles to the right
correspond to the characteristics listed in Table 1. In each rectangle, at least two
control points (very small “boxes”) and a line connecting them determine how the
image characteristics associated with a particular data value are represented in the
image (the figure shows the default settings).

Changes in the position of a control point are reflected directly in the two left-hand
columns of the editor and (in Execute on Change mode) in the Image window. The
“data range” from the bottom to the top of the color column is the range of actual
data values for which image characteristics (e.g., hue) can be specified.

Characteristic Description Numerical Range/
Image Values

Hue A particular color 0.000 = Red
0.333 = Green
0.666 = Blue
1.000 = Red

 Tutorial I Saturation Purity of color 0.0 = White (all colors)
0.5 = “Pastel” (50% of one color)
1.0 = Pure (100% of one color)

Value Degree of
brightness

0.0 = Black (0% brightness)
0.5 = Dark (50% brightness)
1.0 = Maximum (100% brightness)

Opacity Degree of
transparency

0.0 = 0% Opaque (100% transparent)
0.5 = Semi-opaque (50% transparent)
1.0 = 100% Opaque (0% transparent)

Specifying Colormap Values
You can specify a Colormap value in two ways:

� Directly by manipulating a control point.

� Indirectly through the Add Control Points dialog box.

The first is quick and approximate. The second is slower and precise.

 Chapter 2. Tutorial I: Using Data Explorer 17

Figure 9. Colormap Editor for .../example1.net. The four image characteristics controlled by
the editor (hue, saturation, value, and opacity) are also listed in Table 1. The numerical
range for each is 0.0–1.0. For Hue this range is “r g b r” (red green blue red); the current
setting corresponds to the red-green-blue spectrum of the color column to the left. The
column furthest left (RGB) displays the red-green-blue color values corresponding to the four
settings on the right. Note that each setting is determined by a “line” whose position can be
changed by moving the “control point” at one of its ends; the shape of the line can be
modified by adding control points (see text). The values 0.0 and 2.5000000 are the
minimum and maximum of the data values used in the visual program.

Specifying approximate values:

1. Position the mouse cursor in the middle of the large Value rectangle and
double click the left mouse button. Note the changes that result:

� A new control point appears (turning the vertical line into two line
segments) and the Value button is activated.

� The data value of the new point is displayed in the data range next to the
color column (the RGB area, color column, and image show corresponding
changes).

2. To move the control point, use the left mouse button to drag it. The RGB area,
color column, data value, and image all change accordingly.

3. To return Value to its previous state, double click on the control point.

Specifying exact values:

1. Select Edit in the menu bar of the Colormap Editor and then select Add
Control Points in the pull-down menu. A dialog box appears (see Figure 10
on page 19).

18 IBM Visualization Data Explorer: QuickStart Guide

Figure 10. Add Control Points Dialog Box. This dialog box has two interactors: The first
specifies the actual data value for which a corresponding set of Colormap values are to be
implemented. The second specifies one of the four Colormap values, such as Hue in this
example (see text).

 Tutorial I

2. Click on the Saturation rectangle of the Colormap Editor. The label button in
the editor is activated (recessed) and the new interactor label in the Add
Control Points dialog box changes to “Saturation value (0.0 to 1.0).”

3. Click on the data value displayed in the dialog box, type in the value 1, and
press Enter. The new value is displayed as 1.ððððð.

4. Click on the saturation value displayed in the dialog box, type in the value .28,
and press Enter. The new value is displayed as ð.28ððð.

5. Click on Add in the dialog box: A control point corresponding to the new values
in the dialog box appears in the Saturation rectangle of the editor. The RGB
area, color column, and image all change accordingly.

Now that you know how to open and execute visual programs and to control the
images they generate, you can proceed to Tutorial II, which deals with various
techniques for visualizing data.

 Chapter 2. Tutorial I: Using Data Explorer 19

Additional Notes on Control Points

Displaying Control Point Values

By default the Colormap Editor displays the values of all control points. To
display the value of an individual point:

1. Select in order:
a. Options in the menu bar of the ColorMap Editor
b. Display Control Point Data Value in the pull-down menu
c. Selected in the pull-down list.

2. Click on the desired control point in the ColorMap Editor (the rectangle
containing the control point is automatically activated if it is not already
activated). The data value corresponding to the selected control point
appears in the data range next to the color column.

3. Repeat the preceding selection procedure, except click on All in the
pull-down list (instead of Selected). Data values for all control points in the
activated rectangle now appear in the data range.

Deleting Control Points

You can delete control points one at a time or in groups:

� To remove control points one at a time (in an activated rectangle), double
click on each point to be removed

� To remove two or more points at a time:
1. Select points by either:

– Shift-clicking: Press the Shift key and click on each point to be
deleted; or

– Drawing a selection box: Hold down the left mouse button and drag
the cursor to generate a “selection box” in the selected rectangle
and enlarge it to the desired size. Release the button (the box
disappears, but any “boxed” points are selected).

2. Select Edit in the menu bar and then Delete Selected Control Points
in the pull-down menu. All selected control points are deleted and the
image is updated.

20 IBM Visualization Data Explorer: QuickStart Guide

Chapter 3. Tutorial II: Editing and Creating Visual Programs

3.1 Editing a Visual Program: The Basics . 22
3.2 Creating a Visual Program: Two short examples 24

A simple two-dimensional field . 24
A simple three-dimensional field . 24

3.3 Importing Data . 25
Example 1 . 25
Example 2 . 26

3.4 A thumbnail Sketch of the Data Prompter Choices 27
3.5 Importing Your Own Data . 28
3.6 Visualizing 2-Dimensional Data . 29

Colors . 29
Contour Lines . 29
Streamlines . 30
RubberSheet . 30
2-D Scalar Glyphs . 31
2-D Vector Glyphs . 32

3.7 Visualizing 3-Dimensional Data . 32
Isosurfaces . 32
Slices . 32
Streamlines . 33
3-D Scalar Glyphs . 34
3-D Vector Glyphs . 34
Volume Rendering . 34

3.8 Tasks and Tools . 36
Adding Captions . 36
Adding Input Tabs to Tool Icons . 37
Connecting Scattered Data Points . 37
Controlling Execution with Switch . 37
Controlling Inputs: Configuration Dialog Boxes 38
Controlling Inputs: Interactors . 39
Creating Animations . 41
Creating and Using Macros . 42
Data-driven Tools . 43
Modules: Using AutoColor . 44
Modules: Using Compute . 44
Modules: Using Map . 45
Modules: Using Plot . 46
Processing Images . 46
Saving and Printing Images . 47

3.9 Scripting Language . 47

 Tutorial II

 Copyright IBM Corp. 1991-1997 21

This tutorial will show you how to modify existing visual programs and create new
ones. In the process, it will also introduce you to a number of the most commonly
used modules. As you become more experienced using Data Explorer, you can
explore more of each module’s many options.

Tutorial II Visual Programs

� Visual programs and files required for Tutorial II all reside in the same
directory and therefore have the same path name except for file name and
extension. Thus where a visual program is referred to only by its file name
and extension (i.e., .../filename.ext), the full path name is easily derived
if needed:

/usr/lpp/dx/samples/tutorial/filename.ext

� The procedures you will be using most are:
– 2.4, “Opening and Executing a Visual Program” on page 6
– selecting tools and placing their icons in the Visual Program Editor

canvas (see “Selecting tools and placing icons”)
– opening and modifying a configuration dialog box (see “Specifying

inputs: configuration dialog boxes” on page 23 and also “Controlling
Inputs: Configuration Dialog Boxes” on page 38).

3.1 Editing a Visual Program: The Basics
When you open the Visual Program Editor (VPE) with the dx -edit command, or
by choosing New Visual Program in the Startup window, you will see a large blank
area (the “canvas”) and two “palettes” to its left (see Figure 4 on page 7). The
palette at top lists “categories” of tools (modules). The palette below it lists the
tools in the currently selected (highlighted) category.

Selecting tools and placing icons
1. Click on a tool category (e.g., Transformation) in the upper palette. The tools

in that category are now listed in the lower palette.
2. Click on a tool in the lower palette (e.g., AutoColor) to highlight it.
3. Move the cursor into the canvas area. Note that it becomes an inverted “L.”
4. Position the cursor at the point where you want the tool icon to appear and

click again to generate the icon.

 Tool icons
Each tool icon has one or more tabs on top and bottom. These tabs represent,
respectively, input(s) to the tool module and output(s) from it.

There are two ways to specify an input:

� by specifying a value in the configuration dialog box associated with a particular
tool

� with an arc, or line, connecting the output tab of one icon to the input tab of
another.

22 IBM Visualization Data Explorer: QuickStart Guide

Specifying inputs: configuration dialog boxes
To open the configuration dialog box for a tool, either:

� Double click on the tool icon in the canvas, or
� Single click on (highlight) the tool icon in the canvas and select “Configuration”

from the Edit pull-down menu.

In the case of interactors, color maps, the Image tool, and the Sequencer, the first
procedure invokes a “control box” (another kind of dialog box). The second
procedure always invokes a configuration dialog box.

Tabs and inputs to a tool module
Each input parameter in the configuration dialog box corresponds to an
upper tab on the tool icon. The leftmost tab corresponds to the first
parameter, and so on.

Visible versus hidden parameters
At the bottom of the dialog box are Expand and Collapse buttons. The first
button “expands” the dialog box, displaying additional parameters. The
second button “collapses” the dialog box, hiding every parameter whose
“Hide” toggle button is activated. (When a tool has no hidden parameters,
both buttons are disabled, as indicated by their gray labels.)

 Tutorial II

Specifying inputs: arcs and icons
A visual program is a “network” of interconnected tool modules. In the VPE
window, this network is represented as a set of tool icons connected to one another
by lines (“arcs”) representing the data (Figure 4 on page 7 in Tutorial I shows such
a network.)

Connecting tool icons with arcs

1. Position the cursor on an output tab of an icon and hold down the left
mouse button: the cursor becomes a downward-pointing arrow, and a
parameter or data name for that tab appears on the icon.

2. Drag the cursor to another icon: the output tab remains connected to
the cursor by a highlighted line (arc). If the connection is valid, the input
tab(s) will be highlighted when the cursor arrow touches the icon. (If the
connection is invalid, the tab(s) will not be highlighted, and an error
message will appear.

3. Release the mouse button to establish a connection to a valid input tab.

Notes:
a. If the “receiving” icon has two or more valid input tabs, if you release

the mouse button when the cursor is on the main part of the icon,
the connection to the first (leftmost) tab is automatic. To establish a
connection to a different tab requires placing the cursor on that tab
before releasing the mouse button.

b. You can establish a connection starting with an input tab and
dragging the arc to an output tab.

Disconnecting or moving an arc
Click on the input tab to which the arc is connected (e.g., the input tab on
Sequencer): a highlighted arc, connected to an (Import) output tab appears:

� Disconnect the arc by dragging the cursor to an empty spot in the
canvas and releasing the mouse button, or

� Move the arc by dragging it to another icon and releasing the mouse
button to establish the new connection.

 Chapter 3. Tutorial II: Editing and Creating Visual Programs 23

Deleting a tool icon
1. Highlight the tool icon by clicking on it.
2. Select Delete in the Edit pull-down menu. .

Moving a tool icon
Select a tool icon and drag it to the desired location before releasing the mouse
button.

3.2 Creating a Visual Program: Two short examples
If necessary, review 3.1, “Editing a Visual Program: The Basics” on page 22.

A simple two-dimensional field
In this first example, we will import a two-dimensional field on a regular grid. The
data describe the topography (elevation) of the southeastern United States. First
start Data Explorer by typing

dx -edit

or choose New Visual Program from the Data Explorer Startup window.

From the Import and Export Category in the top left palette, choose the Import
module. Place it on the large blank canvas area.

From the Realization Category choose the RubberSheet module. Place it below
the Import module. From the Rendering Category choose the Image module. Place
it below the RubberSheet module.

Now connect the output of Import to the first input of RubberSheet, and connect the
output of Rubbersheet to the input of Image. Notice that the first tab of Import is
colored differently than any other tabs visible. This is because this parameter is
required. This is the file name of the data file to import.

Open the configuration dialog box for Import. Specify the first parameter (name) as
/usr/lpp/dx/samples/data/southeastern_topo.dx.

Execute the visual program by selecting Execute Once from the Execute menu. You
should see an image showing the topography as a deformed surface.

To add colors, insert an AutoColor module (Transformation Category) between
RubberSheet and Image (or between Import and RubberSheet).

A simple three-dimensional field
In this second example, we will import a three-dimensional field on a regular grid.
The data describe the cloud water density in a simulation of a storm.

As before, place an Import tool from the Import and Export Category on the canvas.
Place an Isosurface tool from the Realization Category below Import. Place an
Image tool from the Rendering Category below Isosurface. Connect the output of
Import to the first input of Isosurface, and connect the output of Isosurface to the
input of Image.

Open the configuration dialog box for Import, and type in the name parameter as
/usr/lpp/dx/samples/data/cloudwater.

24 IBM Visualization Data Explorer: QuickStart Guide

Execute. You will see an isosurface (constant value surface) of the cloudwater
density. Not that if you are using the same Image tool as in the previous example,
you may need to “reset the camera” for the new data set. Choose Reset from the
Options menu of the Image window.

Open the configuration dialog box for Isosurface. Notice that the default for the
isovalue (the second input) is the data mean. Change it to the value 0.1 by typing
over the Value field. Execute.

For more complex visualizations, continue with the examples in 3.6, “Visualizing
2-Dimensional Data” on page 29, 3.7, “Visualizing 3-Dimensional Data” on
page 32, and 3.8, “Tasks and Tools” on page 36. A short tutorial on importing data
may be found in 3.3, “Importing Data” and 3.5, “Importing Your Own Data” on
page 28.

 Tutorial II

 3.3 Importing Data
Of the data formats that Data Explorer can import, the General Array format is likely
to be the most useful to a majority of users. Other formats are discussed in detail
in Appendix B, “Importing Data: File Formats” on page 241 in IBM Visualization
Data Explorer User’s Guide.

The General Array format uses a simple header file to describe data characteristics
such as grid dimensions, data type, and layout. The two examples here use the
Data Explorer Data Prompter to create such header files for two simple data files.
The Data Prompter is designed specifically for importing data in General Array
format. (For details of format and the Data Prompter, see Chapter 5, “Importing
Data” on page 61.)

 Example 1
This example illustrates the importation of a simple data set consisting of a single
variable on a 5 × 5 × 5 grid.

 1. First enter:

dx -prompter

You can also access the Data Prompter by choosing Import Data from the
Data Explorer Startup window.

When the initial dialog box appears (see Figure 15 on page 99), choose Grid
or Scattered File, and then type the path name
/usr/lpp/dx/samples/tutorial/external.data. into the Data file name field
at the top of the dialog.

2. Press the Describe Data button to bring up a window which allows you to
describe the data.

3. You can now view the file by clicking on the ellipsis button (...) to the right of
the file-name field and selecting Browser from the pull-down menu. The File
Browser window appears. (If necessary, move this window so that you can
view it and the Data Prompter window at the same time.) It is also possible to
browse the data file from the initial prompter window once the file name has
been entered.

4. The first three lines of the file may look like data, but they are header
information, so click on the Header toggle button and then on # of bytes to the
right (now activated).

 Chapter 3. Tutorial II: Editing and Creating Visual Programs 25

5. Select # of lines and enter the value “3” in the associated field.
6. The first line of the header gives the grid dimensions as 5 5 5, so enter these

numbers in the first three Grid size fields. Note what happens in the Grid
positions fields as each number is entered. (You can use the tab key or the
mouse to move the cursor from one field to the next.)

7. For Data format, ensure that ASCII (text) is selected.
8. Next you need to specify whether the data is in row or column majority order.

In this particular file, the data is in row majority, so select that button.
9. Position the cursor in the first origin, delta field, hold down the left mouse

button, and drag the cursor over the numbers there to highlight the field before
releasing the mouse button. The default values and the highlight bar will
disappear as soon as you start typing.

10. The origin of the grid is [1.0, 3.0, 2.0] (second line of the header) and the
corresponding deltas are .5, .3, and .8, respectively (third line). So enter the
values:

 1, .5

 3, .3

 2, .8

in the three origin, delta fields.
11. On the right side of the prompter window, you can change the name of the

data variable (fieldð by default) and specify the data type and structure. For
this example, the data are floating-point scalar, so you do not need to change
the settings.

12. You can now save the header file you have defined. Select Save As... from
the File pull-down menu. Save the file under any name you choose.

Note: The data can now be imported by specifying this file name to an Import
module. However, if the extension is not “general,” you must specify “general”
in the “format” parameter field of the Import configuration dialog box (see
“Controlling Inputs: Configuration Dialog Boxes” on page 38).

13. In the initial Data Prompter window, note that the Test Import and Visualize
Data buttons are now enabled. First choose Test Import. A window appears,
displaying a description of the imported data. Now choose Test Import. A
general purpose visualization program will be run on this data set. To view the
program, choose Open Visual Program Editor from the Windows menu of the
Image window. You can also experiment with changing the interactor settings in
the control panel.

 Example 2
In this example, you will use the initial dialog box to customize the Data Prompter
before importing a data file that contains scattered data values for two variables.
The organization of the file is:

x, y, data1, data2

x, y, data1, data2

. . .

where x, y define the positions (or locations) of the data. (See also “For Future
Reference” later in this example.)

1. First, invoke the Data Prompter (as in Example 1, Step 1). When the initial
dialog box appears, click on the Grid or Scattered File button for scattered
data. Then click on the Grid Type button for scattered data (farthest right).

2. Use a stepper button to set Number of variables to “2.”

26 IBM Visualization Data Explorer: QuickStart Guide

3. The data positions are specified in the data file itself, so activate the Positions
in data file toggle.

4. The data positions are 2-dimensional (x,y), so use a stepper button to set
Dimension to “2.”

5. Verify that the Single time step toggle is activated.
 6. Set Data Organization to Columnar.

7. Click on Describe Data. The simplified prompter window appears.
8. Position the mouse cursor in the Data file field at the top left and type in the

path name /usr/lpp/dx/samples/tutorial/spreadsheet.data.

You can view the file by choosing Browser (as in Example 1).
9. There is no header in this file. Set # of Points to “49.”

10. To save the header file you have defined, select Save As... in the File
pull-down menu. Save the file under any name you choose.

11. The Test Import and Visualize Data buttons in the initial Data Prompter
window are now enabled. Choose Visualize Data to see a visualization of this
scattered data.

Many other examples of using the General Array format can be found in 5.1,
“General Array Importer” on page 63. Data Prompter options are described in 5.4,
“Data Prompter” on page 96.

For Future Reference

It is important to note that the top-to-bottom order of items in the Field list
(right side of window) is the same as the left-to-right order of items in the data
file itself:

locations x, y

Fieldð data1

Field1 data2

... ...

(“locations” is a General Array reserved word used to indicate when numbers in
a data file are to be interpreted as “positions”).

The order of the field list can be changed (with the Move field stepper buttons)
to agree with the order in the data file.

If other information (e.g., descriptive text) is interspersed among the data
values, you must use the layout options available in the full Data Prompter (see
Layout on page 108 and “layout” on page 92).

 Tutorial II

3.4 A thumbnail Sketch of the Data Prompter Choices
Data Explorer File

This choice is for when you already have data stored in Data Explorer
format, for example if you are using a filter which converts from another
format to Data Explorer format.

CDF Format
This is a standard data format which Data Explorer imports directly. An
application programming interface can be obtained from the National
Space Science Data Center, NASA Goddard Space Flight Center.

 Chapter 3. Tutorial II: Editing and Creating Visual Programs 27

netCDF Format
This is a standard data format which Data Explorer imports directly. An
application programming interface for netCDF can be obtained from the
Unidata Program Center in Boulder, Colorado.

HDF Format
This is a standard data format which Data Explorer imports directly. HDF
was created at the National Center for Supercomputing Applications.

Image File
Data Explorer directly imports TIFF, MIFF, GIF, and RGB format
images.

Grid or Scattered File
This option allows you to specify a general array header which can
describe a wide variety of formats of data. Data can be on a regular
grid, a warped grid with positions explicitly specified, or scattered. The
general array format can skip header lines and embedded descriptive
text. Data can be multidimensional, multivariable, and series (see 5.1,
“General Array Importer” on page 63).

Spreadsheet Format file
This option is typically used for non-spatial data, for example the output
of a spreadsheet program which might look like:

 Customer Sales Profit

 company_a 1.2 938

 company_b 8.9 1ð37

 . . .

 . . .

 . . .

See “ImportSpreadsheet” on page 170 in IBM Visualization Data
Explorer User’s Reference.

3.5 Importing Your Own Data
The Data Prompter gives you access to some general purpose visualization
programs which can visualize a wide variety of data types. The intent is to get you
a picture of your data as quickly as possible. So start by importing your data
through the Data Prompter and then choose the Visualize Data button. You can
see the visual program used by choosing Open Visual Program Editor from the
Windows menu of the Image window. You can save the visual program by
choosing the Save As option from the Visual Program Editor File menu.

The following sections in this tutorial include a number of examples of different
types of visualizations that can be performed on data. Each one uses sample data
provided with Data Explorer. If you want to apply a particular visualization method
(program) to your own data, proceed as follows:

1. Create a General Array Format header file for your data with the Data Prompter
(see 3.3, “Importing Data” on page 25 and 5.4, “Data Prompter” on page 96)
or use any other available method of importation (see IBM Visualization Data
Explorer User’s Guide).

2. Starting with the visual program you want to use, open the Import configuration
dialog box and change the name parameter to the name of the file to be
imported (either the General Array header file or the data file if another format
is used).

28 IBM Visualization Data Explorer: QuickStart Guide

3. Execute the visual program using your data file.

Note: You will probably have to “reset the camera” to see your data, because
the program you choose has viewing parameters appropriate to the sample
data but not necessarily to yours. To reset the camera, select View Control in
the Options pull-down menu of the Image window. Click on Reset at the
bottom of the dialog box.

 Tutorial II

3.6 Visualizing 2-Dimensional Data
This section describes several ways of visualizing 2-dimensional scalar and vector
data.

 Colors
Using the AutoColor tool to color 2-dimensional data is the simplest visualization
method available. By default, AutoColor assigns blue to the smallest values and
red to the largest. (If the data are vector, the colors are based on the magnitude of
the vectors).

1. Open and execute visual program .../AutoColor2D.net.

The resulting image is a map of temperatures around the world: highest near
the equator and over continents; lowest near the poles and in the oceans.

2. To display the temperature values associated with each color, connect the
output tab of the ColorBar icon in the VPE window to the open input tab on the
Collect icon.

3. Reexecute the visual program.

The Color tool and the Colormap Editor provide additional control of the color map:

1. Open and execute visual program .../Color2D.net.
2. Open the Colormap Editor by double clicking on the Colormap icon.
3. Select Execute on Change in the Execute pull-down menu. Any change you

now make in the Colormap Editor appears immediately in the image. For
example, you can experiment with:
� moving control points (clicking on and dragging)
� adding control points (double clicking at the desired location)
� deleting control points (double clicking on individual points).

4. Connect the output tab of the ColorBar icon in the VPE window to the open
input tab on the Collect icon.

5. Select Execute on Change in the Execute pull-down menu. The color bar from
the Colormap Editor now also appears in the image. Again, a change made in
the editor is immediately reflected in the image.

For more information, see AutoColor, Color, and ColorBar, in IBM Visualization
Data Explorer User’s Reference.

 Contour Lines
Contour lines connect points of the same value in a 2-dimensional data set. The
visual program in this example uses elevation data for the southeastern United
States.

1. Open and execute visual program .../Isosurface2D.net.

The contour line that appears in the image has an isosurface value of 0 meters
(sea level).

 Chapter 3. Tutorial II: Editing and Creating Visual Programs 29

2. Open the Isosurface configuration dialog box.
3. In the value parameter field, change “0.0” to “20” and click on OK. The dialog

box closes.
4. Select Execute on Change in the Execute pull-down menu and note the change

in the contour line.
5. Reopen the Isosurface configuration dialog box and type “0 20” in the value

parameter field.
6. Click on OK. The image now consists of two contour lines.

For more information, see Isosurface in IBM Visualization Data Explorer User’s
Reference.

 Streamlines
If your 2-dimensional data set consists of vectors, you can create streamlines that
trace the path of a massless particle in a vector field.

1. Open and execute visual program .../Streamlines2D.net. The image is a set
of streamlines that follow a wind field over the surface of the earth.

2. Change the number of streamlines by changing the value of the density
parameter in the configuration dialog box of the Sample tool.

3. Reexecute the visual program.

Note: Streamlines can be generated in other ways as well. For example:

1. Pass a list of 2-dimensional positions to the start parameter in the Streamline
configuration dialog box by either:

a. inserting a VectorList interactor stand-in (from Interactor in the
categories palette) into the visual program, and connecting it to the start
parameter tab of Streamline or

b. typing the start positions in the configuration dialog box for Streamline.

2. Use the Grid tool (from Realization in the categories palette) to create a
particular set of start positions. Any field that contains positions can be used
as the starting point for streamlines.

This sample visual program contains a Grid tool. Connect it to the start
parameter tab of Streamline. It generates a 3 × 3 grid of points. Modify it to
create a 10 × 3 grid of starting points.

3. Use the Probe tool (from Special in the categories palette) to select starting
points in the Image window.

This sample visual program contains a Probe tool. (Compute is used to make
the value of the probe point 2-dimensional.) Connect the output of Compute to
the start input tab of Streamline, and then move the probe (i.e., enter cursor
mode, using the View Control dialog box).

See Grid, Probe, and Streamline in IBM Visualization Data Explorer User’s
Reference.

 RubberSheet
You can “warp” the representation of 2-dimensional data with the RubberSheet tool.

1. Open and execute visual program .../RubberSheet.net. The image
represents elevation above sea level in the southeastern United States.
Regions of greatest elevation are colored red; regions of lowest elevation, blue.

2. Open the RubberSheet configuration dialog box.

30 IBM Visualization Data Explorer: QuickStart Guide

3. Change the value in the scale parameter field to “.002.”
4. Click on OK and reexecute the visual program. The contrast of variation is

greatly increased.

For more information, see RubberSheet in IBM Visualization Data Explorer User’s
Reference.

You can also add contour lines to a Rubbersheet image:

1. Select Realization in the categories palette and then Isosurface in the tools
palette.

2. Place the icon to the right of RubberSheet.
3. Connect the output of RubberSheet to the first input tab of Isosurface (the only

connection that Data Explorer will allow you to make). Make sure that you do
not break the connection to Shade.

4. Open the Isosurface configuration dialog box.
5. Change the number parameter value to “10” and click on OK.
6. Select Structuring in the categories palette and Collect in the tools palette.
7. Place the Collect icon below Isosurface.
8. Connect the outputs of both Shade and Isosurface to the inputs of Collect

(again, Data Explorer will allow only valid connections).
9. Disconnect Image from Shade.

10. Connect the output of Collect to the input of Image.
11. Reexecute the visual program. The result is a set of colored contour lines

combined with the Rubbersheet image.

You can change the color of the contour lines:

1. Select Transformation in the categories palette and then Color in the tools
palette.

2. Place the Color icon to the right of RubberSheet and Collect.
3. Open the Color configuration dialog box.
4. Delete “(no color added)” in the color parameter field and type in “black” (the

quotation marks are unnecessary and will be added by Data Explorer).
5. Click on OK.
6. Move the output of Isosurface from Collect to Color.
7. Connect the output of Color to the input of Collect.
8. Reexecute the visual program.

See Color and Isosurface in IBM Visualization Data Explorer User’s Reference.

 Tutorial II

2-D Scalar Glyphs
In this example, elevation data are represented both by color and by glyphs (the
black circles).

1. Open and execute visual program .../AutoGlyph2DScalar.net. The elevation
values range from higher (orange; larger circles) to lower (blue; smaller circles).
The size of each glyph (circle) is proportional to the data value it represents.
To display these values:

2. Open the configuration dialog box for AutoGlyph.
3. In the type parameter field, replace “(input dependent)” with “text” and click on

OK.
4. Reexecute the program. The actual data values that appear are called text

glyphs.

 Chapter 3. Tutorial II: Editing and Creating Visual Programs 31

See AutoGlyph in IBM Visualization Data Explorer User’s Reference.

2-D Vector Glyphs
Glyphs can be used to represent vector as well as scalar data.

� Open and execute visual program .../AutoGlyph2DVector.net.

Again, data values are represented by color and by glyphs (arrows). In this
example of wind velocity data, colors represent the magnitude and arrows the
direction. (The black squares signify missing data or data omitted as invalid by
the Include module in the program.)

See AutoGlyph in IBM Visualization Data Explorer User’s Reference.

3.7 Visualizing 3-Dimensional Data
The following examples illustrate several ways of visualizing 3-dimensional data.

 Isosurfaces
This example uses cloud-water density data for a severe storm.

1. Open and execute visual program .../Isosurface3D.net.

The “isovalue” used for generating the isosurface that appears is, by default,
the average of all the data values. (The default isovalue can be found by
selecting Open Message Window in the Windows pull-down menu.)

2. Change the isovalue:
a. Open the configuration dialog box for Isosurface.
b. In the value parameter field, set the value to “0.3.”
c. Click on OK and reexecute the visual program. The new isosurface is

significantly smaller.

See Isosurface in IBM Visualization Data Explorer User’s Reference.

 Slices
Following are a few examples of how to generate and process data slices.

For 3-dimensional data on any type of grid or for non-orthogonal slices, use the
MapToPlane tool. If the data set is on a regular grid, use the Slab tool to take slices
along connection elements. You can use other tools (e.g., AutoColor or
RubberSheet) on data slices just as you can on any 2-dimensional object.

1. Open and execute visual program .../MapToPlane.net. The image is a
colored plane through a 3-dimensional data field. By default, MapToPlane maps
onto a plane at the center of the data. To change the orientation of this plane:

2. Open the configuration dialog box for MapToPlane, change the value in the
normal parameter field to [1 1 1] and click on OK. The change of orientation will
appear when the program is reexecuted.

3. Reexecute the visual program. MapToPlane performs the necessary
interpolation for a data slice of any orientation in a 3-dimensional field.

See MapToPlane in IBM Visualization Data Explorer User’s Reference.

To visualize an orthogonal slice without interpolation, use Slab:

32 IBM Visualization Data Explorer: QuickStart Guide

1. Open and execute visual program .../Slab.net. The image is a translucent
isosurface with a colored slice (or slab) cutting through it. To visualize a slice
through another part of the isosurface:

2. Open the configuration dialog box for Slab and change the position parameter
value to “10.”

3. Click on OK or Apply.
4. Reexecute the visual program. The position of the new slice is changed.

See Slab in IBM Visualization Data Explorer User’s Reference.

To create an animation that generates different slices of the data:

1. Select Special in the categories palette and then Sequencer in the tools palette.
2. Position the cursor to the right of Slab in the VPE.
3. Open the Slab configuration dialog box.
4. Click on the position toggle (unsetting the parameter value). The parameter

field now reads “(all)” and the third input tab on the Slab icon (counting from
the left) projects outward from the icon (instead of into it).

5. Click on OK.
6. Connect the output tab of Sequencer to this third input tab (i.e., “position”) of

Slab.
7. Double click on the Sequencer icon to display the Sequence Control panel.
8. Click on the frame button (...) to display the Frame Control panel.
9. Reset the limits:

a. Click on the min field, type “0,” and press Enter.
b. Click on the max field, type “20,” and press Enter.

10. Click on the Forward (5) button to play the sequence.

See “Using the Sequencer” on page 14 in this Guide and “Sequencer” on
page 297 in IBM Visualization Data Explorer User’s Reference.

 Tutorial II

 Streamlines
The Streamline module traces the path of a massless particle through a static
velocity field.

1. Open and execute visual program .../Streamlines3D.net. The image is a
translucent isosurface with a single streamline starting from the point [25000
5000 25000] (as specified in the Streamline module’s configuration dialog
box). This streamline can be transformed into a ribbon:

2. Select Annotation in the categories palette and then Ribbon in the tools palette.
3. Position the Ribbon icon below Streamline in the VPE canvas.
4. Disconnect Streamline output from Collect input and reconnect it to Ribbon

input.
5. Connect Ribbon output to Collect input.
6. Reexecute the visual program. The streamline changes to a ribbon.

If you want the twist of the ribbon to represent the vorticity of the wind field:

1. Open the Streamline configuration dialog box.
2. Change the flag parameter value from “(input dependent)” to “1” and click on

OK. Streamline computes the degree of twist from the vorticity of the wind
field.

3. Reexecute the visual program. The twist is greater in regions of higher wind
vorticity.

To make the color of the ribbon correspond to wind velocity:

 Chapter 3. Tutorial II: Editing and Creating Visual Programs 33

1. Select Transformation and then AutoColor in the palettes.
2. Position the AutoColor icon between Ribbon and Collect in the VPE canvas.
3. Disconnect the Ribbon output from the Collect input and reconnect it to the

first (leftmost) input of AutoColor.

Note: Both input tabs can accept a connection, but the semi-highlighting
indicates required input (i.e., the module cannot function without it).

4. Connect the first (leftmost) output of AutoColor to the available input of
Collect.

5. Reexecute the visual program. Note the variation of color in the ribbon.

See Ribbon and Streamline in IBM Visualization Data Explorer User’s
Reference.

3-D Scalar Glyphs
Scalar glyphs can represent 3-dimensional as well as 2-dimensional data.

1. Open and execute visual program .../AutoGlyph3DScalar.net. The spherical
glyphs on the isosurface represent a subset of the data elements.

2. To visualize the entire data set:
a. Disconnect the Map output from AutoGlyph.
b. Connect the output of the left-hand Import module to the first (“data”) input

tab of AutoGlyph.
c. Reexecute the visual program. The number of glyphs is greatly increased.

You can also create your own glyphs (both scalar and vector). For example:

� Connect the output of Shade to the second (“type”) input tab of AutoGlyph.
� Reexecute the visual program. The combination of Construct, Connect, and

Shade produces a small pyramidal glyph.

See AutoGlyph, Connect, Construct, and Shade in IBM Visualization Data
Explorer User’s Reference.

3-D Vector Glyphs
Vector glyphs can represent 3-dimensional as well as 2-dimensional data.

1. Open and execute visual program .../AutoGlyph3DVector.net. The image is a
set of 3-dimensional arrow glyphs on an isosurface.

2. To visualize the entire data set:
a. Disconnect Map output from AutoGlyph.
b. Connect the output of the left-hand Import module to the first (“data”) input

tab of AutoGlyph.
c. Reexecute the visual program. The number of glyphs is greatly increased.

 Volume Rendering
Volume rendering is a technique for using color and opacity to visualize the data in
a 3-dimensional data set. (In contrast, surface techniques use tools like
Isosurface and MapToPlane to display a 2-dimensional surface, although in
3-dimensional space.) The following are some simple examples.

1. Open and execute visual program .../VolumeRendering.net. As the network in
the canvas shows, the color of the volume is determined by AutoColor. The
data set contains relatively few high values (red) and relatively many low values
(blue). No structure is apparent in the image.

2. Select Transformation and then Equalize in the palettes.

34 IBM Visualization Data Explorer: QuickStart Guide

3. Position the Equalize icon between Import and AutoColorin the VPE canvas.
4. Disconnect Import output from AutoColor input and reconnect it to the first

input tab (“data”) of Equalize.
5. Connect Equalize output to the first input tab (“data”) of AutoColor.
6. Reexecute the visual program. Equalize redistributes the data values more or

less uniformly between the minimum and maximum of the data. Although the
resulting image is somewhat diffuse, the structure of the data (the electron
density of an imide molecule) is now visible.

AutoColor parameters can be used to add definition to the structure.

1. Delete the Equalize module: Click on the icon and select Delete in the Edit
pull-down menu. The connections to Import and AutoColor are automatically
deleted along with the icon.

2. Reconnect the Import output to the first input tab (“data”) of AutoColor.
3. Open the AutoColor configuration dialog box.
4. Set the value of the min parameter to “.1” and click on OK.
5. Reexecute the visual program. All data values smaller than 0.1 are rendered

invisible (black). The image is much darker, but still visible.
6. To increase the visibility of the data, increase the value of the intensity

parameter in the AutoColor configuration dialog box to “5.”
7. Click on OK and reexecute the visual program. The structure of image is now

fairly distinct.

A color map gives you much greater control over the appearance of the image:

1. Disconnect AutoColor from Image and connect the Color output to the Image
input.

2. Reexecute the visual program.
3. Bring up the Colormap Editor by double clicking on the Colormap icon. The

color-bar, Hue, and Opacity settings are clearly reflected in the image: regions
of low data values (green) and smaller regions of higher data values (red). All
other data values have been rendered invisible.

Note: To make a region or volume invisible, it is necessary to set both its
intrinsic opacity and its color value to zero. The reason is that the volume
rendering model assumes that regions emit light as well as absorb it. So even
if its opacity is zero (no absorption), a region will still emit light unless its color
is black ([0 0 0]).

It is interesting to contrast the volume rendering of previous images with a surface
technique. For example:

1. Disconnect Color from Image and connect the Isosurface output to the Image
input.

2. Reexecute the visual program. The resulting image is an isosurface
representation of the structure of an imide molecule.

You can also combine surface techniques with volume rendering. For example:

1. Select Structuring and then Collect in the palettes.
2. Position the Collect icon above Image in the VPE canvas.
3. Disconnect Isosurface from Image.
4. Connect the first output tab (“mapped”) of AutoColor to either of the Collect

input tabs.
5. Connect the Isosurface output to the other Collect input tab.
6. Connect the Collect output to the Image input.

 Tutorial II

 Chapter 3. Tutorial II: Editing and Creating Visual Programs 35

7. Reexecute the visual program. The result is a combination of the
volume-rendering and isosurface images of the imide molecule.

8. To make the isosurfaces translucent, insert a new Color module (from the
Transformation category) into the network between Isosurface and Collect.
(Use the first, or “input,” tab of the Color icon.)

9. Open the Color configuration dialog box and set the opacity parameter to “.3.”
(You can try other values as well.)

10. Click on OK and reexecute the visual program. The isosurfaces are now
translucent.

3.8 Tasks and Tools
The following examples illustrate a number of techniques and tools that are helpful
in using Data Explorer.

 Adding Captions
The Caption tool allows you to control the placement, font, size, wording, and other
aspects of a caption in the Image window.

1. Open visual program .../Caption.net.
2. Select Open All Control Panels in the Windows pull-down menu. A control

panel appears.
3. Select Execute on Change in the Execute pull-down menu. When the image

appears, note that the caption at the bottom of the Image window is the same
as the name of the realization technique shown in the control panel.

4. Click on the option button in the control panel and select Streamlines. Both
the image and the caption change accordingly.

Use the Caption configuration dialog box to change the placement and font size of
the caption.

1. Double click on the Caption icon to open the configuration dialog box and click
on the position toggle button.

2. Clear the position parameter field and type “0 1”.
3. Click on OK. The caption moves from its default position to the top left corner of

the Image window.

Note: [0 0] specifies the bottom left corner and [1 1] the top right.
4. Reopen the Caption configuration dialog box and click on Expand to show the

hidden parameters.
5. Click on the height toggle button.
6. Double click on the associated parameter field to highlight the value there.
7. Type a larger value in its place (e.g., if the value was “15,” type in “20”).
8. Click on OK. The caption type changes size. (See “Displaying and hiding

parameters” on page 38.)

To change the wording of a caption, you must use the Format tool:

1. In the VPE window, disconnect the Caption input from the Selector interactor.
2. Select Annotation and Format in the palettes.
3. Position the Format icon between Selector and Caption and open the

configuration dialog box.
4. Drag the cursor over "(none)" in the template parameter field and then type

“Visualization Method: %s” in its place (%s indicates that a string will be
inserted).

36 IBM Visualization Data Explorer: QuickStart Guide

5. Click on OK.
6. Connect the second output tab of Selector to the second (middle) input tab of

Format.
7. Connect the Format output to Caption and reexecute the visual program. The

caption reads “Visualization Method: Streamlines.”

See Caption and Format in IBM Visualization Data Explorer User’s Reference.

Adding Input Tabs to Tool Icons

 Tutorial II

Tools such as Compute, Options, and Switch, among others, can have a variable
number of inputs. If you need more tabs than the number shown by a default icon,
you can increase the number:

1. Select the tool icon to which you want to add tabs.
2. Select Input/Output Tabs in the Edit pull-down menu and select Add Input

Tab in the cascade menu. An input tab is added to the icon.
3. Repeat Step 2 as many times as necessary.

Note: You can also remove tabs from a tool icon by following the same
procedure, but select Remove Input Tab in Step 2.

Connecting Scattered Data Points
Many Data Explorer modules cannot be used with scattered data points that have
no connections (i.e., interpolation elements). However, Data Explorer does provide
two methods for creating connections between scattered data values.

1. The first method uses the Connect module.
� Open and execute visual program .../Connect.net.

The scattered data values in the image are created by the Construct
module. The Connect module uses triangles to connect them.

2. The second method uses the Regrid module.
� Open and execute visual program .../Regrid.net.

The data values here are the same as those in the Connect example.
They are mapped onto a regular grid by the Regrid module. The rightmost
Construct module generates the grid.

See Connect and Regrid in IBM Visualization Data Explorer User’s Reference.

Controlling Execution with Switch
Switch allows you to decide which portions of a visual program are executed (e.g.,
whether a data set is visualized with Isosurface or MapToPlane).

1. Open visual program .../Switch.net.
2. Select Execute on Change in the Execute pull-down menu. The image that

appears is a streamline representation of the data set.
3. Select Open All Control Panels in the Windows pull-down menu. You can now

use the selector interactor to switch from one visualization to the other.

You can modify the selector interactor and increase the number of choices.

1. Double click on the interactor to open the Set Selector Attributes dialog box.
2. Double click on the Value parameter field and type “3” in that space.
3. Double click on the Label parameter field and type “MapToPlane.” in that

space.

 Chapter 3. Tutorial II: Editing and Creating Visual Programs 37

Note: The integer passed from Selector to the first input tab of Switch
determines what input, if any, is passed on to another module. If the integer is
“0” or greater than the number of objects being passed to the module, the
output is NULL. Thus, “1” selects the first input (second input tab), “2” the
second input (third input tab), and so on.

4. Click on Add. A new third line should appear under the first two.
5. Click on OK to close the dialog box. If you click on the option button in the

selector, you will see that it now offers a third choice. Leave the control panel
open.

The third choice shown in the Selector, however, is not yet operative (select
MapToPlane in the control panel and reexecute the visual program). To implement
this choice, you must incorporate a third visualization in the program, such as that
represented by the program segment on the right side of the VPE canvas. This
segment computes a MapToPlane of temperature data.

1. Click on the Switch icon to highlight it.
2. Select Add Input Tab in the Edit pull-down menu. A new input tab is added to

Switch.
3. Connect the first (“mapped”) output tab of the AutoColor icon (below the

MapToPlane icon) to the new input tab of Switch.
4. Select MapToPlane in the control panel and reexecute the visual program. The

MapToPlane visualization appears in the Image window.

Note: Switch selects among inputs. The corresponding module that selects
among outputs is Route. Both are described in IBM Visualization Data Explorer
User’s Reference.

Controlling Inputs: Configuration Dialog Boxes
A configuration dialog box allows you to change the parameter values of a module.
To open the dialog box, double click on the module’s icon or single-click on the
icon and select Configuration from the Edit pull-down menu. You can close the
dialog box by clicking on OK.

Changing parameter values
A configuration dialog box displays the input parameters of a module.

You can change a parameter value by typing in a new value in the corresponding
parameter field on the right side of the dialog box.

Note: If a tab is already connected to an arc, you must first disconnect the arc
before typing in a new value.

Displaying and hiding parameters
Most configuration dialog boxes can be “expanded” to display “hidden” parameters
for less commonly used functions. If a dialog box has hidden parameters, the
Expand and Collapse buttons at the bottom of the box are enabled (i.e., their labels
appear in solid type; otherwise, both labels are gray).

To display hidden parameters, click on the Expand button. To restore the dialog
box to its previous state, click on Collapse.

38 IBM Visualization Data Explorer: QuickStart Guide

Notes:

1. Whether a parameter is hidden or visible is determined by the associated
toggle button in the Hide column of the dialog box.

2. The number of input tabs on an icon varies with the number of visible
parameters in the dialog box.

Controlling Inputs: Interactors Tutorial II

Using a configuration dialog box to specify tool inputs can be awkward, especially if
the inputs are changed frequently or if the number of inputs is large. A simpler
means of controlling input values makes use of interactors, which appear only in
Control Panels. They are represented on the VPE canvas by stand-ins, or icons,
selected from the category and tool palettes just as tools are. The output of an
interactor, like that of any tool, can be connected to one or more inputs.

For this part of Tutorial II, you will use a scalar interactor stand-in to control an
isosurface value. A scalar interactor can control any parameter that accepts a
scalar value as input. Other types of interactor (e.g., vector, integer, string) can
control parameters that take the corresponding type of input.

Begin by opening visual program .../Isosurface3D.net.

Selecting interactors and placing stand-ins
The procedure here is essentially the same as that for selecting tools and placing
icons (see “Selecting tools and placing icons” on page 22).

1. Select Interactor in the categories palette.
2. Select Scalar in the tools palette and position the cursor (now an inverted “L”)

above Isosurface.
3. Click again. The stand-in for the Scalar interactor appears.

Connecting the interactor
1. Click and hold on the Scalar output tab and drag the cursor to the middle

Isosurface input tab (which lights up when the cursor touches it).
2. Release the mouse button to establish a connection (represented by a

rectilinear black line) between the two.

Creating a control panel
Double click on the Scalar icon. A control panel appears containing a scalar
interactor labeled Isosurface value. Stepper arrowheads can be used to change
this value.

Setting the interactor attributes
To set interactor attributes, you must open a Set Attributes... dialog box by:

� double clicking on the interactor in the control panel or
� selecting Set Attributes... in the Edit pull-down menu of the control panel.

When the dialog box appears, you are ready to (re)set the attribute values:

1. Click on the Maximum field. The value disappears.
2. Type 1 and press Enter to set the new value.
3. Repeat Steps 1 and 2 for Minimum, and change the value to .1.
4. Repeat Steps 1 and 2 for Global Increment and change the value to .ð1.

 Chapter 3. Tutorial II: Editing and Creating Visual Programs 39

5. Repeat Steps 1 and 2 for Decimal Places and change the value to 2. (You can
also reset this value with the stepper buttons.)

6. Click on OK. The dialog box closes.

When the minimum and maximum values are set, Data Explorer will prevent values
outside that range from being entered.

Note: As discussed in “Data-driven Tools” on page 43, data-driven interactors
derive their own minimum and maximum from the data itself.

Executing the program on change
1. Select Execute On Change in the Execute pull-down menu of the VPE menu

bar.
2. Use the right-hand stepper arrowhead in the interactor to increase the

isosurface value. As the value changes, so does the image in the Image
window.

Notes:
a. You can also change the isosurface value by clicking on it, typing in a new

value, and Pressing Enter.
b. You can accelerate the value change by holding down the mouse button

after selecting a stepper arrowhead.
c. If you change values faster than Data Explorer can generate images, it will

complete processing the current value and then “jump” to the one most
recently specified, passing over any intermediate values.

3. Click on the left-hand stepper arrow to decrease the value. Again, new images
appear in the Image window.

4. Select End Execution in the Execute pull-down menu.

Changing the interactor style
In this example, you will change the interactor style from “stepper” (as in the
preceding example) to “slider.”

1. Click on the scalar interactor Isosurface value if it is not already highlighted.
2. Click on Set Style in the Edit pull-down menu of the control panel. Another

pull-down menu appears.
3. Click on Slider. The interactor changes appearance.
4. Select Execute On Change as in the preceding example.
5. Using the left mouse button, drag the slider tab to the right or left to increase or

decrease the isosurface value.
6. Release the mouse button to generate an image corresponding to the new

value.
7. Select End Execution in the Execute pull-down menu.

Changing the interactor label
The default label of an interactor connected to a tool is the name of the tool
followed by the name of the input parameter: in this case “Isosurface value.”

1. Click on the Isosurface value interactor if it is not already highlighted with a
white border.

2. Click on Set Label... in the Edit pull-down menu. The Set Interactor
Label... dialog box appears.

3. Double click on the Interactor Label field or drag the mouse cursor over the
text.

40 IBM Visualization Data Explorer: QuickStart Guide

4. Type in a new name and click on OK. The dialog box closes and the new
interactor label appears in place of the previous one.

Note: You may break the label into two or more lines by typing \n where you
want the desired line break(s) to appear.

 Creating Animations
This example demonstrates a few ways of using a sequencer.

1. Open (but do not execute) visual program .../Animate.net.
2. Select Sequencer from the Execute pull-down menu. Note that both the Loop

and Palindrome buttons in the control panel are already activated (recessed).
3. Click on the Forward button (5): the visual program executes. The Image

window opens and the image begins to run continuously through an “animation”
sequence in which a data slice changes position.

4. Click on the Stop button (■).
5. Disconnect the leftmost AutoColor icon from Image and connect the left output

tab of the other AutoColor icon to Image.
6. Click on the Forward button (5) again. The animation sequence shows a set of

streamlines growing longer and then shorter and then repeating the process.
7. Disconnect AutoColor from Image and connect Isosurface to Image.
8. Click on the Forward button (5). The sequence is that of a continuously

changing isosurface.
9. Click on the Stop button (■) to halt the sequence.

See Sequencer in IBM Visualization Data Explorer User’s Reference.

Note: In this example, a transmitter and several receivers are used to make
“invisible” connections between tools. The frame tool below the Sequencer icon is a
transmitter. The other frame tools are receivers. Receivers and transmitters
belong to the Special category of tools (see IBM Visualization Data Explorer User’s
Reference).

 Tutorial II

Changing the limits of the sequencer
1. If the sequence is still running, click on the Stop button (■) to halt it.
2. Click on the ellipsis button (...) in the Sequence Control panel to open the

Frame Control dialog box.
3. Click on the Max parameter field, type in “30,” and then press Enter.
4. Click on the Forward button (5) to start the sequence. The isosurface

sequence now proceeds to larger isovalues (smaller isosurfaces).
5. Close both control panels by double clicking on the top left button of the

Sequence Control box.

For Future Reference

Min and Max control the minimum and maximum number of frames that a
sequencer can generate. Start and End are set by default to the same values,
but they can take any values in the range. The Increment parameter controls
the difference between output values (frames).

 Chapter 3. Tutorial II: Editing and Creating Visual Programs 41

Creating and Using Macros
Macros are collections of tools that can be represented by a single icon in the VPE
canvas. Macros thus allow you not only to simplify the appearance of your visual
program but also to share commonly used functions between programs. This
section briefly introduces the basic concepts of creating and using macros. (The
topic is treated in detail in IBM Visualization Data Explorer User’s Guide.) The
general procedure for creating a macro follows on the next page.

1. Decide how many inputs and outputs your macro will have.
2. For each input, select Special in the categories palette and then Input in the

tools palette.
3. Position the mouse cursor in the VPE canvas and click once to generate an

Input icon.
4. Repeat Steps 2 and 3 for Output.
5. Open the configuration dialog box for each tool to give it an appropriate name,

description, and default value.
6. Select any additional tools you want to include in the macro and place their

icons on the canvas.
7. Connect the Input and Output icons to the appropriate tools.
8. Select Macro Name in the Edit pull-down menu and name the macro.
9. Save the macro.

For Future Reference

� To use the new macro, you must first load it into Data Explorer: select Load
Macro from the File pull-down menu.

Once loaded, the macro will be available from the tools palettes. Simply
select it and place its icon on the canvas.

� For descriptions of the inputs and outputs specified when the macro was
created, open its configuration dialog box.

� To see the component contents of the macro, click on the icon to highlight it
and then select Open Selected Macro in the Windows pull-down menu.

The following example illustrates the use of a macro in a visual program.

1. Select Load Macro in the File pull-down menu.
2. Type /usr/lpp/dx/samples/tutorial/SampleMacro.net in the Filter field at

the top of the dialog box and press Enter. The name of the macro appears
under Files on the right side of the dialog box.

3. Click on the macro name to highlight it, and then click on Load Macro at the
bottom of the dialog box. A new category appears in the categories palette:
Macros.

4. Select the new category. The name of the new macro appears in the tools
palette. Now you can open a visual program that uses this macro.

5. Open and execute visual program .../UseSampleMacro.net.

Although the visual program looks simple, the image it produces is quite
elaborate.

6. Click on the SampleMacro icon to highlight it and then select Open Selected
Macro in the Windows pull-down menu. A new window appears, displaying the
“network” of SampleMacro: This macro performs various operations on the
output from three Input modules (top) and feeds the result to a single Output
module (bottom). It is this output that is fed to the Display module in the visual
program.

42 IBM Visualization Data Explorer: QuickStart Guide

 Data-driven Tools
Many of the tools in Data Explorer can be “data driven”. That is, their attributes
(e.g., limits) can be determined dynamically at run time from the data set being
used.

Note: The attributes of data-driven tools become effective only after the first
execution with the new data set.

 Tutorial II

Data-Driven Colormap Editor
1. Open and execute visual program .../DataDrivenColormap.net. The image is

a color-mapped slice of data, with a color bar at the top of the Image window.
2. Select Open All Control Panels in the Windows pull-down menu and change

the Selector value to wind.

3. Reexecute the visual program. The color map changes to reflect the new data
set.

See Colormap in IBM Visualization Data Explorer User’s Reference.

Data-Driven scalar interactor
Scalar, integer, and vector interactors can all be data driven. The example here is
that of a scalar interactor.

1. Open and execute visual program .../DataDrivenScalar.net.
2. Select Open All Control Panels in the Windows pull-down menu and change

Format value to cloudwater.
3. Leave the control panel open and reexecute the visual program. The

Isosurface value (along with the image) is updated to reflect the new data set.

See Scalar in IBM Visualization Data Explorer User’s Reference.

 Data-driven selector
In this example, the input from Import to the Selector interactor is a data group
consisting of two fields.

1. Open and execute visual program .../DataDrivenSelector.net. The image is
a temperature field.

2. Select Open All Control Panels in the Windows pull-down menu.
3. Select wind_velocity in the control panel and reexecute the visual program.

The control-panel options temperature and wind_velocity are derived from the
field names of the imported data.

In this network, Inquire determines whether or not the data set is “vector” and, if
so, Include excludes invalid data values. If the data is not vector, the path
followed goes directly from Select to Switch.

See Selector in IBM Visualization Data Explorer User’s Reference.

 Chapter 3. Tutorial II: Editing and Creating Visual Programs 43

 Data-driven sequencer
In this example, the limits for the Sequencer are set automatically according to the
number of elements in the x-dimension of the data set (as determined by the
Inquire module).

1. Open (but do not execute) visual program .../DataDrivenSequencer.net.
2. Select Sequencer from the Execute pull-down menu. Note that both the Loop

and Palindrome buttons in the control panel are already activated (recessed).
3. Click on the Forward button (5): the visual program executes. The Image

window opens and the image begins to run continuously through an “animation”
sequence of two dozen frames.

4. Stop the animation sequence by:
� Clicking on the Stop (■) or Pause (||) button, or
� Clicking on the Loop and Palindrome buttons to deactivate them.

See Sequencer in IBM Visualization Data Explorer User’s Reference.

Modules: Using AutoColor
The AutoColor module automatically colors data for you. By default, it colors data
from blue (for minimum values) to red (for maximum values).

1. Open and execute visual program .../AutoColor.net. The image is a
translucent isosurface and a colored plane.

2. Select Sequencer in the Execute pull-down menu and click on the Forward (5)
button in the Sequence Control panel. The colors represent wind data.

3. Click on the Stop button (■) before proceeding.

Because AutoColor colors each plane individually, the full blue-red range is used
each time to represent the wind variation in a single plane. As a result, the same
color in different planes can represent different data values and different colors can
represent the same value. In order to make the color representation consistent
from plane to plane:

1. Connect the output tab of the rightmost Import icon to the second (projecting)
input tab of AutoColor (“min”).

2. Click on the Forward button (5) of the Sequencer again. AutoColor now
applies the blue-red range to the entire data set, so that the same color values
consistently represent the same data values in every plane.

3. Open the AutoColor configuration dialog box and click on Expand to show the
hidden parameters. (See “Displaying and hiding parameters” on page 38.)

4. Click on the opacity toggle button and change the value in the parameter field
to “.3.”

5. Click on the Forward button (5) of the Sequencer again and note the change in
the plane.

See AutoColor in IBM Visualization Data Explorer User’s Reference.

Modules: Using Compute
Compute is a general purpose module for performing algebraic, trigonometric, and
logical operations on data. It can also extract components from vectors, create
vectors from scalar components, and cast between different data types.

1. Open and execute visual program .../Compute.net. The image represents
wind velocity over the surface of the earth. Color values are based on the

44 IBM Visualization Data Explorer: QuickStart Guide

magnitude of the wind velocity, and the small black squares and rectangles
represent missing data.

2. Disconnect Include from AutoColor and connect the output of Compute to
AutoColor instead.

3. Execute the visual program. Now the colors are based on the absolute value
of the x-component of the wind velocity.

4. Double click on the Compute icon to open the configuration dialog box. In this
example the module has a single input (wind), and the operation to be
performed is to determine the absolute value of its x-component.

5. Change “abs(wind.x)” in the Expression field to “abs(wind.y).” and reexecute
the visual program. The image changes accordingly.

Note: Compute is not limited to a single input, and input tabs can be added with
the Add Input Tab function in the Edit pull-down menu (see “Adding Input Tabs to
Tool Icons” on page 37). By default the inputs to Compute are labeled a, b, c,...,
but you can rename them.

It is also possible to use Compute on components other than data. For example,
suppose you wanted to display a regular 2-D grid of latitude and longitude on a
spherical surface. You could use Compute to convert the x,y positions of latitude
and longitude to x, y, and z positions of a spherical surface. For an example, open
and execute visual program .../WarpedGrid.net, which generates two entirely
different objects (in separate Image windows) from the same data.

See Compute in IBM Visualization Data Explorer User’s Reference.

 Tutorial II

Modules: Using Map
The Map module maps one field of data onto another. The field to be mapped to is
the first parameter; the field to be mapped from, the second parameter. In the
most common use of this module, no other parameters are set: the positions of the
first field are used as indices to the positions of the second; the associated data
values from the second field are then mapped as new data values onto the first.

Components other than positions and data can also be mapped to one another.

1. Open and execute visual program .../Map.net. In this example, wind values
are mapped onto an isosurface of cloud-water quantity and the result is
colored. In addition, wind values are mapped onto a probe point and displayed
as text glyphs.

2. Double click on the right-hand Import icon to open its configuration dialog box.
The name parameter field contains a file name ending in “wind”.

3. Change “wind” to “temperature” and click on OK.
4. Reexecute the visual program. The image is now a color map of temperatures

on the isosurface. The number displayed is the data value of the probe point.
5. To move the probe point, first select View Control in the Options pull-down

menu.
6. Next select Cursors in the Mode pull-down menu. The probe point appears as a

small white square immediately to the left of the data value.
7. Drag the probe point to reposition it, and then release the mouse button. The

data value is updated and displayed next to the newly positioned probe point.

See Map and Probe in IBM Visualization Data Explorer User’s Reference.

 Chapter 3. Tutorial II: Editing and Creating Visual Programs 45

Modules: Using Plot
Plot creates a 2-dimensional plot from x,y data. (Data Explorer expects the
“positions” component to contain the x-values, and the data component the
y-values. You can pass (import) a group of such fields to Plot, which plots them
as multiple lines. You can also add data-point markers to the lines.

1. Open and execute visual program .../Plot.net. Two Image windows appear:
one a color map of elevation data for the southeastern United States; the other,
a plot of the elevations along the purple line shown in the color map. (The
Slab module extracts the elevation data along the line, but Construct could
have been used to create the line and Map to map the elevation data onto the
line. Note that Compute is used to extract only the x-component of the
positions.)

2. To animate the line:
a. Select Special and Sequencer in the palettes.
b. Position the Sequencer icon above Slab.
c. Double click on the icon to open the Sequence Control panel and then

single-click on the ellipsis button (...) to open the Frame Control dialog
box.

d. Set Min to “0” and Increment to “5.”
e. Click on the ellipsis button again to close the Frame Control dialog box.
f. Double click on Slab to open its configuration dialog box.

g. Click on the position toggle button to deactivate it (the associated
parameter field will read “(all)”) and then on OK.

h. Connect the Sequencer output tab to the third input tab of Slab (“position”).
i. Click on the Forward button (5) in the Sequence Control panel.

3. The limits of the plot change somewhat from frame to frame because they are
based on the line given for each frame. To make the limits constant:

a. Double click on the Plot icon to open its configuration dialog box.
b. Set the corners toggle button on and change the values in the parameter

field to {[260, -6000][290, 2000]}.
c. Click on Expand (to show the hidden parameters) and then on the font

toggle button (to change the font to “roman_tser”).
d. Click on OK at the bottom of the dialog box.
e. Click on the Forward button in the Sequence Control panel.

4. To place data-point markers on the data plot:
a. Disconnect Plot from Unmark.
b. Connect the Options output tab to the first (“input”) tab of Plot.
c. Reexecute the visual program. The markers appear as small open circles.
d. To see what options were specified, double click on the Options icon to

open its configuration dialog box. In this example, the “mark” attribute is
set to “circle” and the “mark every” attribute is set to “10.” Thus every tenth
data point is marked with a circle.

See Plot in IBM Visualization Data Explorer User’s Reference.

 Processing Images
A variety of image processing functions are available with the Compute, Filter, and
Overlay modules. A few of these functions are demonstrated in this example.

1. Open visual program .../ImageProcessing.net.
2. Select Open All Control Panels in the Windows pull-down menu. The control

panel displays two selector interactors:
� The first specifies which of three filters is to be applied to the data.

46 IBM Visualization Data Explorer: QuickStart Guide

� The second specifies which of four image-processing functions is to be
performed. (Note that only the first two of these functions is affected by the
options selected in the first interactor.)

3. Select Execute on Change in the Execute pull-down menu. You can now select
these different functions and observe their effects.

Saving and Printing Images
Once you have created an image, you can save it to a file or send it to a printer.
(See also IBM Visualization Data Explorer User’s Guide.)

� If your visual program uses the Image tool (as the programs in this tutorial do),
you can select Save Image and Print Image in the File pull-down menu of the
Image window.

When saving an image, you can choose among several formats and specify the
final image size or the resolution. Similarly, you can choose format and size or
resolution before printing an image on your local printer (with a command such
as: lpr -Pmy_postscript_printer).

� If you are not using Image, you should use the WriteImage tool (Import and
Export category).

However, you will have to create the image with Render and display it with
Display (both are from the Rendering category).

Connect the output of Render to the first input tab (“input”) of WriteImage.
Specify the format and size, using the parameters described under WriteImage
in IBM Visualization Data Explorer User’s Reference.

 Tutorial II

 3.9 Scripting Language
Sometimes it may be more convenient to use the Data Explorer scripting language
instead of the Visual Program Editor to create visualizations. A common instance
is that of using Data Explorer scripts in overnight batch jobs to create visualizations
and save them to disk for analysis the next day.

A simple script that computes a series of isosurfaces and exports them to disk is
/usr/lpp/dx/samples/tutorial/batch_script (this is not a visual program, so you
cannot read it into the Visual Program Editor):

data = Import("/usr/lpp/dx/samples/data/watermolecule");

counter = 1;

macro create_iso(isovalue,counter)->(counter)

{

isosurface = Isosurface(data,isovalue);

filename = Format("iso%d", counter);

 counter++;

 Export(isosurface, filename);

}

(continued on the next page)

 Chapter 3. Tutorial II: Editing and Creating Visual Programs 47

counter=create_iso(ð.1, counter);

counter=create_iso(ð.2, counter);

counter=create_iso(ð.3, counter);

counter=create_iso(ð.4, counter);

counter=create_iso(ð.5, counter);

counter=create_iso(ð.6, counter);

(end of script)

This script first imports data from a file called watermolecule. It then defines a
macro that takes two parameters: an isovalue and a counter. The macro returns
the counter as an output. It then computes an isosurface, creates a filename
(using the counter as part of the name), and exports the isosurface to that filename.
The counter is also incremented. Finally the macro is called six times, with six
different isovalues.

To run this script, first copy /usr/lpp/dx/samples/tutorial/batch_script to the
directory being used. Then enter the command:

dx -script < batch_script

or

 dx -script

and at the dx> prompt:

 include "batch_script"

If you want to view the exported isosurfaces, you can use visual program
/usr/lpp/dx/samples/tutorial/view_isosurfaces.net.

Note: Visual programs are also scripts. However, if a visual program uses a
macro, you must include that macro before including the visual program. For
example:

dx> include "my_macro.net"

dx> include "program.net"

48 IBM Visualization Data Explorer: QuickStart Guide

Chapter 4. Sample Visual Programs and Sample Macros

The directory /usr/lpp/dx/samples/programs contains a number of sample visual
programs. In addition, a set of subdirectories categorize programs by subject (e.g.,
2-D Data, Annotation, etc.). To start, you may want to look at the programs in the
subdirectory /SIMPLE.

The sample visual programs listed here can be invoked, like any visual program,
from the VPE. To access the available sample programs, enter:
/usr/lpp/dx/samples/programs/\.net in the Filter field (of the Open... dialog
box) and press Enter.

The macro descriptions are in 4.2, “Sample Macros” on page 59.

Notes:

1. For the user’s convenience, and where appropriate, some programs have been
listed in more than one section.

2. Once a program has been opened, relevant descriptive and tutorial information
can be accessed with:
� the Application Comment option of the Help pull-down menu (in either the

Image window or the VPE window)
� the Open dialog box, by clicking on the Comments button.

 Samples

4.1 Sample Visual Programs

Simple Visual Programs
Found in directory /usr/lpp/dx/samples/programs/SIMPLE

Each example program listed here illustrates a typical use of the Data Explorer
module it is named for.

Arrange.net
AutoAxes.net
AutoColor.net
AutoGlyph.net
AutoGrid.net
Band.net
Caption.net
Color.net
ColorBar.net
Compute2.net
Connect.net

Construct.net
Describe.net
FaceNormals.net
GetSet.net
Gradient.net
Grid.net
Histogram.net
Include.net
Isolate.net
Isosurface.net

Light.net
Map.net
MapToPlane.net
MarkUnmark.net
Post.net
QuantizeImage.net
Reduce.net
Refine.net
Regrid.net
Route.net

Rubbersheet.net
ScaleScreen.net
ShowBoundary.net
Slab.net
Sort.net
Streamline.net
Supervise.net
Switch.net
Verify.net
VisualObject.net

 2-Dimensional Data
Found in directory /usr/lpp/dx/samples/programs/2D_DATA

AlternateVisualizations.net Various ways to visualize 2-dimensional data sets.

BandedColors.net How to create an image with a set of constant-color bands

 Copyright IBM Corp. 1991-1997 49

ConnectingScatteredPoints.net How to use the Connect and Regrid modules to
create connections (interpolation elements) between points.

FFT.net Computing fast and discrete Fourier transformations on sample data sets.

GeneralImport1.net, GeneralImport2.net Importing data in the general array
import format.

InvalidData.net How data marked as invalid are handled by various modules.

Sealevel.net Visualizing the effect of rising sea levels on eastern U.S. coastlines.

Sort.net How to sort a field based on the y-position.

Topo.net Some ways of visualizing topographic data (in this example, two data sets
sharing the same grid: elevation and a gray-scale image).

UsingDrape.net How to “drape” an image or other field onto a height map.

UsingFilter.net How to perform filtering operations on images.

UsingIsosurface.net How to create isosurfaces and contour lines.

UsingMorph.net How to perform morphological operations on images.

UsingOverlay.net Using the Overlay module to combine images.

 3-Dimensional Data
Found in directory /usr/lpp/dx/samples/programs/3D_DATA

AnnotationGlyphs.net How to create your own glyphs for use with AutoGlyph and
Glyph.

AutoColor.net A simple use of AutoColor to color a 3D field.

CappedIso.net How to “close” an isosurface at the boundary of a three-dimensional
volume.

ComputeOnData.net How to perform a mathematical function on all the data values
in a field.

ContoursAndCaption.net How to draw contour lines on a plane. The position of the
plane is controlled by the Sequencer, and a caption shows the current position of
the plane.

Distributed.net Demonstrating the module-level distributed processing capabilities
of Data Explorer. The network is decomposed into three mutually disjoint subsets,
each of which can be executed on a different host in a distributed network.

FlyThrough1.net, FlyThrough2.net Two ways to create a “fly through” of data.

Imide_Potential.net Visualizing a molecule in a potential field. This program also
demonstrates the use of a data-driven sequencer.

Isolate.net How to isolate connections of an object.

50 IBM Visualization Data Explorer: QuickStart Guide

MappedIso.net How to map a variable onto an isosurface of another variable.

MovingCamera.net Using the Sequencer to control the position of the viewing point.

MovingSheet.net Using the Sequencer to control the position of a slice through a
data set.

MRI_2.net One way to visualize a set of 2-dimensional MRI slices as a
3-dimensional volume.

PickStreamline.net Using the Pick tool to select points (on an isosurface) as the
origin of streamlines in the data.

PlotLine.net, PlotLine2.net, PlotTwoLines.net Using the Plot module to display
2-dimensional plots of data values.

ProbeText.net One way to place text in an image to show data values at probe
points.

RubberTube.net How to make a tube diameter vary with the data value.

SharedCamera.net How to create two images that share the same camera. One of
the images is used for rotating, zooming, and resizing; the other tracks the
changes.

SimplifySurface.net How to simplify a surface consisting of triangles so that fewer
triangles are used.

Streamline.net Using parameters of the Streamline module to visualize a vector
field.

ThunderGlyphSheet.net Visualization of simulation data from a model of a thunder
storm. (A slicing surface of variable position and shape is used to intersect an
isosurface of the data; the area of the isosurface is calculated and displayed.)

ThunderStreamlines.net Using the Streamline module to visualize a wind field.

Thunder_cellcentered.net Differences between position-dependent and
connection-dependent (cell-centered) data.

UsingClipPlane.net Using probes to control the orientation of the clipping plane.

UsingGlyphs.net Using the AutoGlyph module to create glyphs for data values.

UsingIsosurface How to create isosurfaces and contour lines.

UsingMap.net Three ways to use the Map module. Two fields differing only in the
content of their data components are used as the data-set and mapping operands
of the Map module. The results are displayed in three separate windows.

UsingStreakline.net Using the Streakline module to visualize a vector-field series.

VolumeClip.net How to clip a surface in a three-dimensional volume by a plane
and then close the surface by the plane.

 Samples

 Chapter 4. Sample Visual Programs and Sample Macros 51

VolumeRenderingSimple.net, VolumeRendering.net How to create a volume
rendering of a 3-dimensional data set. The first example is the simplest possible
visual program; the second is more complex, with a color bar to annotate the
image.

WindVorticity.net Using the DivCurl module to display the vorticity of a vector
field. The program also uses a shared camera and data-driven interactors.

 Annotation
Found in directory /usr/lpp/dx/samples/programs/ANNOTATION

AnnotationGlyphs.net How to create your own glyphs for use with AutoGlyph and
Glyph.

AutoAxesSpecifyTicks.net How to explicitly specify tick locations and labels for the
ticks.

BandedColors.net How to create an image with a set of constant color bands.

Categorical.net How to display categorical (non-spatial) data

ContoursAndCaption.net How to draw contour lines on a plane. The position of the
plane is controlled by the Sequencer, and a caption shows the current position of
the plane.

Distributed.net Demonstrating the module-level distributed processing capabilities
of Data Explorer. The network is decomposed into three mutually disjoint subsets,
each of which can be executed on a different host in a distributed network.

ExpandedFonts.net How to use the expanded font sets of the area and roman_ext
fonts.

FontPreview.net Displaying ASCII text in a Data Explorer font.

GroceryList.net Plots information from a grocery list in a number of different ways;
by category, by item name, etc.

Imide_Potential.net Visualizing a molecule in a potential field. This program also
demonstrates the use of a data-driven sequencer.

Legend.net Shows how to use the Legend module to associate colors with strings.

PickPlot.net Demonstrates how to use picking in a plot to extract x,y positions.

PlotGroupOfLines.net How to plot a multiple-line graph

PlotLine.net, PlotLine2.net, PlotTwoLines.net Using the Plot module to display
2-dimensional plots of data values.

PlotSpecifyTicks.net How to explicitly specify tick locations and labels.

ProbeText.net One way to place text in an image to show data values at probe
points.

SalesOnStates.net Shows how to display sales or other data on a per-state basis.

52 IBM Visualization Data Explorer: QuickStart Guide

Sort.net How to sort a field based on the y-position.

SpecialCharacters.net Displaying all of the characters in the “pitman” or “area”
fonts supplied with Data Explorer. How to specify non-ASCII characters.

ThunderGlyphSheet.net Visualization of simulation data from a model of a thunder
storm. (A slicing surface of variable position and shape is used to intersect an
isosurface of the data; the area of the isosurface is calculated and displayed.)

UsingGlyphs.net Using the AutoGlyph module to create glyphs for data values.

UsingTextAndTextGlyphs.net How to display text data at specified locations in the
space occupied by an object.

 Samples

 Categorical
Found in directory /usr/lpp/dx/samples/programs/CATEGORICAL

Categorical.net How to display categorical (non-spatial) data

Duplicates.net How to detect duplicate values in a data set using
CategoryStatistics

GroceryList.net Plots information from a grocery list in a number of different ways;
by category, by item name, etc.

Legend.net How to create a legend, which associates a set of colors with a set of
strings

SalesOnStates.net How to display sales data by state

ZipCodes.net How to import some data associated with zipcodes using
ImportSpreadsheet, then display those data on a state map. This program also
illustrates the use of CategoryStatistics to compute the mean data value for each
category (in this case, zipcode).

 Colormap Editor
Found in directory /usr/lpp/dx/samples/programs/COLORMAP_EDITOR

DataDrivenInteractors.net Some uses of data-driven interactors.

Imide_Potential.net Visualizing a molecule in a potential field. This program also
demonstrates the use of a data-driven Sequencer.

StandardColormaps Demonstrates a number of useful colormaps, depending on the
type of data being viewed.

UsingColorMaps.net Using color maps to control the visualization of data.

VolumeRendering.net How to create a volume rendering of a 3-dimensional data
set.

 Chapter 4. Sample Visual Programs and Sample Macros 53

 Compute
Found in directory /usr/lpp/dx/samples/programs/COMPUTE

(Compute is a general purpose module for performing mathematical operations on
data.)

Bounce.net The path of a bouncing ball.

Compute2.net A simple visual program which demonstrates how to use the
Compute2 module.

ComputeMultiLine.net How to pass a multiline arithmetic expression to Compute2.

ComputeOnData.net How to perform a mathematical function on all the data values
in a field.

WarpingPositions.net How to use the Compute module to “warp” the positions
component of a field (e.g., warping a 2-dimensional field into the shape of a
cylinder or sphere).

 Data-driven Interactors
Found in directory /usr/lpp/dx/samples/programs/DATA_DRIVEN_INTERACTORS

DataDrivenInteractors.net Some uses of data-driven interactors.

DataDrivenSelector.net How to use a data-driven selector interactor.

Imide_Potential.net Visualizing a molecule in a potential field. This program also
demonstrates the use of a data-driven Sequencer.

 Debugging
Found in directory /usr/lpp/dx/samples/programs/DEBUGGING

Verify.net How to check the internal consistency of a data object.

VisualObject.net Display the hierarchy of a data field.

 Distributed Processing
Found in directory /usr/lpp/dx/samples/programs/DISTRIBUTED_PROCESSING

Distributed.net Demonstrating the module-level distributed processing capabilities
of Data Explorer. The network is decomposed into three mutually disjoint subsets,
each of which can be executed on a different host in a distributed network.

 Image Processing
Found in directory /usr/lpp/dx/samples/programs/IMAGE_PROCESSING

FFT.net Computing fast and discrete Fourier transformations on sample data sets.

MRI_1.net One way to visualize 2-dimensional MRI slices.

UsingEqualize.net How to use the Equalize module to emphasize features in an
image.

54 IBM Visualization Data Explorer: QuickStart Guide

UsingFilter.net How to perform filtering operations on images.

UsingMorph.net How to perform morphological operations on images.

UsingOverlay.net Using the Overlay module to combine images.

 Importing Data
Found in directory /usr/lpp/dx/samples/programs/IMPORTING

Categorical.net How to import some data associated with state abbreviations
using ImportSpreadsheet, then plot the average data for each state.

Duplicates.net checks a simple table of data and checks for duplicate state
names.

GeneralImport1.net, GeneralImport2.net Importing data in the general array
import format.

ImportExternalFilter.net How to use the external-filter option of the Import
module to import data in file formats other than Data Explorer.

ZipCodes.net How to import some data associated with zipcodes using
ImportSpreadsheet, then display those data on a state map. This program also
illustrates the use of CategoryStatistics to compute the mean data value for each
category (in this case, zipcode).

 Samples

 Interface Control
Found in directory /usr/lpp/dx/samples/programs/INTERFACE_CONTROL

DialogStyle.net Using dialog-style control panels. This program is intended to run
with Data Explorer in image mode (i.e., started with dx -image).

InterfaceControl1.net Using ManageControlPanel and ManageColormapEditor to
open and close control panels and the Colormap editor according to the setting of
the Selector interactor (alternating between two realization techniques).

InterfaceControl2.net Using ManageImageWindow to close a plot image window
when a toggle interactor requires it.

InterfaceControl3.net Using ManageControlPanel to open and close different
multiple panels.

 Looping
Found in directory /usr/lpp/dx/samples/programs/LOOPING

Accumulate.net How to use Get and Set to accumulate objects (in this case, slabs
selected from a 3-dimensional volume).

Bounce.net The path of a bouncing ball.

SimpleGetSetLoop.net How to create a program loop with GetLocal/SetLocal,
GetGlobal/SetGlobal, and Done.

 Chapter 4. Sample Visual Programs and Sample Macros 55

 Miscellaneous
Found in directory /usr/lpp/dx/samples/programs/MISC

CensusData.net How to visualize census data on a map of the United States.

ExampleSMP.net How Partition should be incorporated in a visual program so that
Data Explorer SMP can run it in parallel on SMP (symmetric multiprocessor)
machines.

Factorial.net How to compute N factorial using looping.

HomeOwn.net Illustrates the use of the MapOnStates macro to plot home ownership
in the United States over time.

ImageTool.net Using interactors to control different aspects of the Image tool (e.g.,
AutoAxes and background color).

Image_wo_UI.net Demonstrates the Image2Macro, which implements much of the
functionality of the Image tool with SuperviseWindow, SuperviseState, and Display.
Thus this macro shows how you could build your own custom direct interactors
independent of the Data Explorer user interface.

IndependentlyArrange.net Illustrates how to independently arrange a number of
interactive windows within a single larger window using the SuperviseWindow and
SuperviseState modules.

InsetImage.net Illustrates how to inset an independently interactive window within
a larger window.

Interop.net One way of making Data Explorer modules work together. Data can
be mapped onto objects at different points in the visualization to achieve desired
results.

InvalidData.net How data marked as invalid are handled by various modules.

Majority.net The difference between row and column majority when using the
general array format.

ManipulateGroups.net How to use ChangeGroupType and ChangeGroupMember
to restructure groups.

MRI_1.net One way to visualize 2-dimensional MRI slices.

MRI_2.net One way to visualize a set of 2-dimensional MRI slices as a
3-dimensional volume.

MultipleDataSets.net Using the Inquire module and data-driven interactors to
make visual programs more flexible. A relatively “generic” program that can be
used with a variety of different input data sets.

PickStreamline.net Using the Pick tool to select points (on an isosurface) as the
origin of streamlines in the data.

ScatterData.net Some ways to visualize scattered data

56 IBM Visualization Data Explorer: QuickStart Guide

Supervise.net Demonstrates how to use SuperviseWindow, SuperviseState, and
Display together in a simple visual program.

Topo.net Some ways of visualizing topographic data (in this example, two data sets
sharing the same grid: elevation and a gray-scale image).

UsingAttributes.net Using attributes in a Data Explorer format file. (In this
example, attributes added to the file to indicate date and source are used to caption
the image.)

UsingDrape.net How to “drape” an image or other field onto a height map.

UsingEqualize.net How to use the Equalize module to emphasize features in an
image.

UsingMessage.net Using the Message module to present information to the user of
a visual program.

UsingMultiGrids.net Some of the differences between multigrid groups and
generic groups.

UsingParse.net Using the Parse module to extract information from a string.

UsingSwitchAndRoute.net Using the Switch and Route modules to control the
execution of a visual program.

 Samples

 Probes
Found in directory /usr/lpp/dx/samples/programs/PROBES

PlotLine2.net Using the Plot module to display 2-dimensional plots of data values.

ProbeText.net One way to place text in an image to show data values at probe
points.

UsingProbes.net Using probes to control the position of a cutting plane through a
3-dimensional data set.

UsingStreakline.net Using the Streakline module to visualize a vector-field series.

 Rendering
Found in directory /usr/lpp/dx/samples/programs/RENDERING

FatLines.net How to antialias lines and create multiple pixel width lines in
hardware rendering.

Isolate.net Demonstrates an alternative to volume rendering using the Isolate
module.

SharedCamera.net How to create two images that share the same camera. One of
the images is used for rotating, zooming, and resizing; the other tracks the
changes.

TextureMapOpenGL.net Using texture mapping (available only with a hardware
adapter that supports OpenGL) to map an image onto a surface.

 Chapter 4. Sample Visual Programs and Sample Macros 57

UsingClipPlane.net Using probes to control the orientation of the clipping plane.

UsingLights.net How to use lights to illuminate the object in an image.

UsingShade.net Controlling the shading properties of an object.

VolumeRenderingSimple.net, VolumeRendering.net How to create a volume
rendering of a 3-dimensional data set. The first example is the simplest possible
visual program; the second is more complex, with a color bar to annotate the
image.

 Scattered Data
Found in directory /usr/lpp/dx/samples/programs/SCATTERED

AnnotationGlyphs.net How to create your own glyphs for use with AutoGlyph and
Glyph.

ConnectingScatteredPoints.net How to use the Connect and Regrid modules to
create connections (interpolation elements) between points.

ScatterData.net Some ways to visualize scattered data

 Sequencer
Found in directory /usr/lpp/dx/samples/programs/SEQUENCER

ContoursAndCaption.net How to draw contour lines on a plane. The position of the
plane is controlled by the Sequencer, and a caption shows the current position of
the plane.

FlyThrough1.net, FlyThrough2.net Two ways to create a “fly through” of data.

Imide_Potential.net Visualizing a molecule in a potential field. This program also
demonstrates the use of a data-driven Sequencer.

MRI_1.net One way to visualize 2-dimensional MRI slices.

MovingCamera.net Using the Sequencer to control the position of the viewing point.

MovingSheet.net Using the Sequencer to control the position of a slice through a
data set.

Sort.net How to sort a field based on the y-position.

SpecialCharacters.net Displaying all of the characters in the “pitman” or “area”
fonts supplied with Data Explorer. How to specify non-ASCII characters.

Streamline.net Using parameters of the Streamline module to visualize a vector
field.

58 IBM Visualization Data Explorer: QuickStart Guide

 4.2 Sample Macros
Found in directory /usr/lpp/dx/samples/macros.

ArrangeMemberMacro.net Allows you to independently arrange a number of
interactive windows within a larger window.

AutoScaleMacro.net Automatically scales an object to a user-specified aspect ratio.
It is used by the ScatterData example visual program.

BandColorsMacro.net “Bands” a 2-dimensional data set and applies a user-specified
set of colors to the bands. It is used by the BandedColors example visual program.

CappedIsoMacro.net caps an isosurface by the boundary of the data. Used by
CappedIso.net.

ClipSurfaceMacro.net clips a surface by a plane. Is used by the macro
ClipVolumeMacro.net.

ClipVolumeMacro clips a surface in a volume by a plane, capping the hole with a
plane from the volume. Can be nested. Is used by VolumeClip.net.

ConvertColorNameListMacro.net Converts a list of color names to a list of RGB
vectors. It is used by the BandedColorsMacro macro.

DrapeMacro.net drapes one 2-dimensional field over another, using one of them to
deform the surface.

FactorialMacro.net Used by Factorial.net to compute a factorial.

FormatListMacro.net Formats a list of values into a list of strings.

Image2Macro.net Implements much of the functionality of the Image tool with
SuperviseWindow, SuperviseState, and Display. Used by Image_wo_UI.net.

InsetImageMacro.net Allows you to inset an independently interactive window
within a larger window.

InterpolatePositionsMacro.net Used by the FlyThrough example visual program
(see “3-Dimensional Data” on page 50). It interpolates data values within a list of
3-dimensional positions.

MakeLineMacro.net Used by the PlotLine2 example visual program (see
“3-Dimensional Data” on page 50).

The macro takes as input a data field, two points defining the start and end of a
line, and the number of samples to be placed along the line. The macro has two
outputs:

� a line that can be displayed in the Image window
� the data to be plotted, which has two components:

– the “positions” component is the distance along the line
– the “data” component is the data value at each position.

Make3DFieldMacro.net Given three fields with scalar data components, creates an
output field where the x's are the data components of the first field, the y's are the

 Samples

 Chapter 4. Sample Visual Programs and Sample Macros 59

data components of the second field, and the z's are the date components of the
third field. It is used by the ScatterData example visual program.

MapOnStatesMacro.net Allows you to map data onto a map of the United States. It
is used by the CensusData and ZipCodes example visual programs.

MatteMacro.net Used by Bounce.net. It mattes two images together.

PickPlotMacro.net Extracts the transformed x,y position from a picked point in a
plot.

UnsquishGlyphMacro.net Provides a simple solution for the “squished glyph”
syndrome, when data are scaled before rendering. It is used by the ScatterData
example visual program.

60 IBM Visualization Data Explorer: QuickStart Guide

 Chapter 5. Importing Data

5.1 General Array Importer . 63
Describing the Data . 63
Creating a Header File . 66
Some Notes on General Array Importer Format 66

5.2 Importing Data: Header File Examples . 67
Record Style: Single-Variable Data . 67
Record Style: Multivariable Data . 75
Columnar Style . 81

5.3 Header File Syntax: Keyword Statements 85
file . 86
grid . 87
points . 87
block . 88
dependency . 88
field . 88
format . 89
header . 89
interleaving . 90
layout . 92
majority . 92
recordseparator . 92
series . 93
structure . 94
type . 94
positions . 94
end . 96

5.4 Data Prompter . 96
For Future Reference . 97
Supported Formats . 97
Initial Dialog Box . 98
Simplified Data Prompter . 101
Full Data Prompter . 103

5.5 Data Prompter Browser . 109
Starting the Browser . 109
Browser Menu Bar . 109
Browser Text Window . 111
Browser Offset Area . 111

5.6 Using the Header File to Import Data . 111

 Importing Data

 Copyright IBM Corp. 1991-1997 61

Importing data into Data Explorer is the first step in creating a visualization of that
data. Data Explorer supports the importation of a number of data formats: General
Array Importer, Data Explorer native, CDF, netCDF, and HDF (see Appendix B,
“Importing Data: File Formats” on page 241 in IBM Visualization Data Explorer
User’s Guide). The General Array Importer is discussed here not only because it
can import a variety of data types but because its supporting interface makes it
useful to the broadest range of users. This interface consists of the Data Prompter,
for describing the data to be imported, and the Data Browser, for viewing the data.

This chapter deals with the importation of data in the following sections:

� 5.1, “General Array Importer” on page 63
� 5.2, “Importing Data: Header File Examples” on page 67
� 5.3, “Header File Syntax: Keyword Statements” on page 85
� 5.4, “Data Prompter” on page 96
� 5.5, “Data Prompter Browser” on page 109

An Important Note on Fields

Importing data into Data Explorer requires some knowledge of the Data
Explorer data model and at least a working knowledge of a field.

Fields are the fundamental objects in the Data Explorer data model. A field
represents a mapping from some domain to some data space. The domain of
the mapping is specified by a set of positions and (generally) a set of
connections that allow interpolation of data values for points between positions.
Positions represent what can be thought of as (and often really are) locations in
space; the data are the values associated with the space of the positions. The
mapping at all points in a domain (not just those specified by the given
positions) is represented implicitly by specifying that the data are dependent on
(located at) the sample points or on the connections between points.

This simple abstraction is sufficient for representing a wide range of information.
For example, you can describe 3-dimensional volumetric data whose domain is
the region specified by positions and whose data space is the set of values
associated with those positions. The domain of a 2-dimensional image on a
monitor screen is a set of pixel locations, and the data space consists of the
pixel color. For 2-dimensional surfaces imbedded in 3-dimensional space (e.g.,
traditional graphical models) the domain may be a set of positions on the
surface, and the data space a set of data values on that surface.

In Data Explorer the positions and data are said to be components of a field,
and every field must contain at least a “positions” component and a “data”
component. Fields may also contain other components (e.g., “connections”).
Thus a Data Explorer field consists of data and the additional components
needed to describe that data so that Data Explorer can process it.

(cont.)

62 IBM Visualization Data Explorer: QuickStart Guide

An Important Note on Fields (cont.)

Components are represented as arrays of numbers with some auxiliary
information specifying attributes (e.g., type of data dependency). The syntax of
defining fields in the General Array format is described in 5.3, “Header File
Syntax: Keyword Statements” on page 85. The various components are
described in IBM Visualization Data Explorer User’s Guide.

5.1 General Array Importer

Describing the Data
To import data through the General Array Importer, you must be able to answer the
following questions.

1. What are the independent and dependent variables? For example, if
temperature and wind velocity are measured on a latitude-longitude grid, then
latitude and longitude are the independent variables, temperature and wind
velocity the dependent variables. In the case of resistance measurements
versus the voltage applied to a semiconductor, voltage is the independent
variable and resistance the dependent variable.

Components and Variables

In Data Explorer terminology, the values of the independent variable
constitute the “positions” component of a data field. In the examples above,
the first independent variable consists of locations in space and the second
does not, but both would be represented as “positions” in a data field. The
independent variable is always represented by the “positions” component.

The values of the dependent variable constitute the “data” component.

2. What is the dimensionality of the positions and data components? In the first
example above, latitude and longitude are represented by 2-dimensional
positions, the temperature by scalar data, and the wind velocity by 2- or
3-dimensional vectors. In the second example, voltage is represented by
1-dimensional positions and the resistance by scalar data.

3. How is the independent variable (the set of positions) to be described? By a
regular grid (which can be completely described by an origin and a set of
deltas) or by an explicit list (which may or may not be part of the data file)?
For example, data measurements might be on a grid of 1-degree increments in
latitude and 5-degree increments in longitude; voltage levels might be a set of
unrelated values stored with the resistances in the data file.

4. How are the positions connected to one another, if they are connected? For
example, a regular grid of positions might be connected by a regular grid of
connections (lines, quads, or cubes). The connections specify how data values
should be interpolated between positions. Positions that are explicitly specified
(i.e., not regular) can also be connected by a regular grid of connections (e.g.,
if the grid is deformed, or warped). See Figure 11 on page 64.

 Importing Data

 Chapter 5. Importing Data 63

Figure 11. Examples of Grid Types. The three grids in the top row represent surfaces;
those in the bottom row, volumes. Reading from left to right, the three types of grid are:
irregular (irregular positions, irregular connections), deformed regular (irregular positions,
regular connections), and regular (regular positions, regular connections),

Figure 12. Examples of Data Dependency. In the visualization on the left, data
correspond one-to-one with positions. Other data values (and colors) are interpolated
linearly between positions. In the visualization on the right, the elements connecting
positions are quads. Data (and colors) correspond one-to-one with, and are constant within,
each quad.

64 IBM Visualization Data Explorer: QuickStart Guide

Note: The General Array Importer supports only regular connections (lines,
quads, and cubes) or scattered data. For irregular connections such as
triangles or tetrahedra, you can use the Data Explorer native format to import
your data. (See IBM Visualization Data Explorer User’s Guide.)

5. What is the format of the stored data values, ASCII or binary? Are they floating
point, integer, signed or unsigned byte, etc.?

6. Are the data dependent on “positions” or on “connections”? That is, are the
data values associated one-to-one with positions or with the connections
between positions? See Figure 12 on page 64. (Data associated with
connections are often referred to as “cell-centered.”) With position-dependent
data, values between positions are interpolated within the connection element.
With connection-dependent data, values are assumed to be constant within the
connection element.

7. Do these data values represent “series data” or do they constitute only a single
frame of data? In the example of resistance levels versus voltage, data may
exist for each of a number of different doping levels. Each doping level could
be considered a single data field and the collection treated as a series.

8. Is the data in “record” or “spreadsheet” style? (See Figure 14 on page 66.)

9. If the data are on a grid, what is the order of the data items with respect to the
grid? Is it column majority (first index varies fastest) or row majority (last index
varies fastest)? (See Figure 13.)

10. What kind of embedded text (comments, etc.) in the data file must be “skipped”
when the data values are read?

With the answers to these questions, you can now use the General Array Importer
to describe your data.

 Importing Data

Figure 13. Row- versus Column-Majority Grids. The two grids shown here are generated from the same data file,
consisting simply of the numbers 1, 2, 3, ..., 20. The associated header files differ only in the specification of the
grids’ majority.

 Chapter 5. Importing Data 65

Creating a Header File
The General Array Importer uses a “header file” to describe the structure and
location of data to be imported. This file consists of keyword statements that
identify important characteristics of that data (including grid structure, format, and
data type, along with the path name of the file containing the data).

A header file can be created with a text editor or, more easily, with the Data
Prompter, which prompts for the necessary information. (See 3.3, “Importing Data”
on page 25 for an example that uses the Data Prompter and 5.4, “Data Prompter”
on page 96 for a detailed description of how to use it.) The Data Prompter also
checks for incorrect syntax, such as conflicting keywords (see 5.3, “Header File
Syntax: Keyword Statements” on page 85).

Once a header file has been created, the data it describes can be imported into
Data Explorer by the Import module. To identify a header file to Data Explorer
through the Import dialog box:

1. Enter the path name of the header file in the name parameter field.
2. Enter “general” in the format parameter field. (If the file has the extension

“.general,” it is not necessary to specify the format to Import. Header files
created with the Data Prompter are automatically given this extension.)

Some Notes on General Array Importer Format
The General Array Importer imports ASCII or binary data that is organized in one of
two general “styles”: block or columnar. Block style requires that the data be
organized in records, or blocks. Columnar style requires that the data be organized
in vertical columns (see Figure 14).

Figure 14. Block and Columnar Styles of Data Organization. The three horizontal data
blocks at left illustrate the block style; the three vertical columns at right, the columnar style.
A, B, and C represent separate variables.

A0 A1 A2 A3 ...

B0 B1 B2 B3 ...

C0 C1 C2 C3 ...

A0

A1

A2

A3

.

.

.

B0

B1

B2

B3
.
.
.

C0

C1

C2

C3
.

.

.

The following set of FORTRAN I/O statements generate a record-style data file:

 write(15,2ð) A(i),i=1,1ðð

 write(15,2ð) B(i),i=1,1ðð

 write(15,2ð) C(i),i=1,1ðð

 2ð format(1ð(f1ð.3))

An equivalent example in C is shown on the next page.

for(i=ð; i<1ðð, i++) printf("%1ð.3f",A[i]);

for(i=ð; i<1ðð, i++) printf("%1ð.3f",B[i]);

for(i=ð; i<1ðð, i++) printf("%1ð.3f",C[i]);

The following FORTRAN I/O statement produces a columnar-style data file:

66 IBM Visualization Data Explorer: QuickStart Guide

 write(15,1ð) (A(i),B(i),C(i),i=1,1ðð)

 1ð format(3(2x,f1ð.3))

An equivalent example in C is:

for (i=ð; i<1ðð; i++)

 printf(" %1ð.3f %1ð.3f %1ð.3f\n",A[i],B[i],C[i]);

For both the block and columnar styles, the information in the file can be positions
as well as data. The data can be:

� scalar or vector
� a time series
� gridded or scattered (for gridded data the grid structure can be regular or

warped, but the connection elements must be regular; i.e., lines, quads, or
cubes)

� position dependent (associated with the grid positions) or connection dependent
(associated with the grid connections).

 Importing Data

5.2 Importing Data: Header File Examples
The examples in this section are divided into three groups: single variable (a
simplified case of record style), record style, and spreadsheet style. A review of
these examples will provide a good grounding in the use of the Data Prompter and
the creation of header files for importing data with the General Array Importer.

The examples in the first group are generally more detailed than those in the
second and third groups. Since examples often build on previous examples, it is
recommended that you start at the beginning of a group.

The instructional sequence in each example begins with the initial dialog box of the
Data Prompter. Most examples use the Data Prompter to create a header file and
each example shows the header file produced. (For the syntax of keyword
statements in a header file, see 5.3, “Header File Syntax: Keyword Statements” on
page 85.) The command that invokes the Data Prompter and generates the initial
dialog box is:

dx -prompter

Record Style: Single-Variable Data
It is recommended that you treat the first four examples as a unit and review them
in sequence.

Example 1. Scalar Data on a Regular Grid
This example illustrates how a simple floating-point scalar field, on a regular grid,
might be imported from a text file named “record_scalar”. The origin of the grid is
[1 3 2], with deltas of 0.5, 1, and 0.75 in the x, y, and z directions respectively.

1. In the Data Prompter initial dialog box, choose Grid or Scattered File; then
select the leftmost button in the row labeled Grid type (regular grid).

2. Confirm that Number of variables is set to “1” and that the Single time step
toggle button is activated.

3. For Data organization, confirm that the Block (i.e., record) toggle button is
activated.

4. Click on Describe Data to bring up the “simplified” prompter.
5. Enter the path name of the data file in the Data file field:

 Chapter 5. Importing Data 67

/usr/lpp/dx/samples/data/record_scalar

6. Browse the data file if you like by choosing Browser from the ellipses to the
right of the Data Field field.

7. Enter the values “5,” “8,” and “6,” in that order, in the first three Grid size
fields. The number of data values is 240 (i.e., 5 × 8 × 6).

8. Confirm that Data format is set to ASCII (text).
9. Confirm that Data order is set to Row.

10. Finally, set the first three origin-delta pairs (in the Grid positions section of
the prompter) to: 1.0, 0.5; 3.0, 1.0; and 2.0, 0.75, in that order.

Since the data order is Row (i.e., last index varies fastest), the first six data
values are associated with positions [1 3 2], [1 3 2.75], [1 3 3.5], [1 3 4.25], [1
3 5], and [1 3 5.75]. (If the data are stored so that “last index varies slowest,”
Data order should be set to Column.)

11. To save the header file:
a. Select Save As... from the File pull-down menu.
b. When the Save a Data Prompter Header File... dialog box appears,

position the cursor in the Selection field (at the point indicated by the
carat).

c. Enter the name of the file (record_scalar).
d. Click on OK.

The file is saved in your current directory with the extension “.general” and
should look like:

file = /usr/lpp/dx/samples/data/record_scalar

grid = 5 x 8 x 6

format = text

interleaving = record

majority = row

field = fieldð

structure = scalar

type = float

dependency = positions

positions = regular, regular, regular, 1.ð, ð.5, 3.ð, 1.ð, 2.ð, .75

end

Note the information that you have supplied directly (lines 1, 2, and 10). You can
visualize the data file using the Visualize Data button in the initial Data Prompter
window.

Example 2. Cell-centered Data
This example involves modifying the header file created in Example 1. The
important difference is that the data here is cell-centered (connection dependent):
instead of 240 data values (one for each of the 5 x 8 x 6 positions), there are 140
values (one for each of the 4 x 7 x 5 connections). The format is binary.

1. In the Data Prompter initial dialog box, click on Grid or Scattered File, then
Describe Data, to bring up the simplified prompter.

2. Select Open from the File pull-down menu. A new dialog box appears called
“Open a Data Prompter Header....”

3. In the Directories column, highlight the directory in which you saved the
record_scalar header file (if it is not already highlighted).

68 IBM Visualization Data Explorer: QuickStart Guide

4. Highlight record_scalar.general in the File column, and then click on OK.
The simplified prompter now displays the information for the record_scalar

header file.
5. Change the path name in the Data file field to:

/usr/lpp/dx/samples/data/record_depconnections

6. Select Full prompter from the Options pull-down menu.
7. When the Full prompter dialog box appears, change Dependency from

“positions” to “connections.” To confirm this change, click on Modify at the
bottom of the dialog box (note the instruction there).

8. Repeat Example 1, Step 10 (see above), to save the header file, which should
look like:

file = /usr/lpp/dx/samples/data/record_depconnections

grid = 5 x 8 x 6

format = text

interleaving = record

majority = row

field = fieldð

structure = scalar

type = float

dependency = connections

positions = regular, regular, regular, 1, .5, 3, 1.ð, 2.ð, .75

end

Note the information that you have supplied directly or changed (lines 1, 2, 3, and
9).

 Importing Data

Example 3. Data with Header information
A data file may contain descriptive information in addition to the data to be
imported. To import only the data, therefore, it is necessary to “skip” such
information when the file is read. The header keyword statement enables you to do
just that, by specifying a number of bytes or lines to be skipped or a string to be
searched for. For example, suppose the scalar data field of Example 1 had 3 lines
of descriptive text preceding the data.

1. As in Example 2 (Steps 2 through 4), open the record_scalar header file.
2. Change the path name in the Data file field to:

/usr/lpp/dx/samples/data/record_withheader

3. Activate the Header toggle button and then click on the option button just to the
right of it.

4. From the list that appears, select # of lines and enter the value “3” in the
associated text field.

5. Repeat Example 1, Step 10 (see To save the header file on page 68), to save
the header file, which should look like:

 Chapter 5. Importing Data 69

file = /usr/lpp/dx/samples/data/record_withheader

grid = 5 x 8 x 6

format = text

interleaving = record

majority = row

header = lines 3

field = fieldð

structure = scalar

type = float

dependency = positions

positions = regular, regular, regular, 1, .5, 3, 1.ð, 2.ð, .75

end

Note the addition of a header keyword statement (line 6).

Example 4. Naming a Field
By default, the Data Prompter names data fields in numerical order: field0, field1,
and so on. But a data field can be named with a field keyword statement.

Once the data are imported into Data Explorer, you can, for example, extract the
name (using the Attribute module) and include it in a caption (using the Caption
module). So if there are two types of data (e.g., temperature and pressure), each
can be automatically and appropriately labeled with an identifying name, thereby
“tagging” the associated data for future reference. As a result, it is also possible to
import a field by name when there is more than one field.

For this example suppose that the data in Example 1 are temperature values (see
To save the header file on page 68).

1. Open the record_scalar header file, as in Example 2.
2. In the right-hand panel of the prompter, change Field name from “Field0” to

“Temperature.” To confirm this change, click on Modify at the bottom of the
dialog box (note the instruction there).

3. Repeat Example 1, Step 10 (see To save the header file on page 68), to save
the header file, which should look like:

file = /usr/lpp/dx/samples/data/record_scalar

grid = 5 x 8 x 6

format = text

interleaving = record

majority = row

field = Temperature

structure = scalar

type = float

dependency = positions

positions = regular, regular, regular, 1, .5, 3, 1.ð, 2.ð, .75

end

Note the change in the field keyword statement (line 6).

70 IBM Visualization Data Explorer: QuickStart Guide

Example 5. Deriving Grid Information from a Data File
Being able to derive grid information directly from a data file is particularly useful if
you import data with a standard format but with grid dimensions that vary from data
set to data set. For example, if the first line of the data file is:

dimensions 1ðð 3ðð

you can use any of the following grid keyword statements to obtain the grid
dimensions from the data file.

� grid = lines ð, 11, 3, 1, 3

This statement says
1. Skip 0 (zero) lines of the file.
2. Skip 11 characters (the word “dimensions” and one space).
3. Read the first dimension from 3 characters.
4. Skip 1 character.
5. Read the second dimension from 3 characters.

� grid = bytes 11

This statement says to skip 11 characters and begin reading.
� grid = marker “dimensions”

This statement says to start reading after the string marker “dimensions.”

See “grid” on page 87. See also B.1, “General Array Importer: Keyword
Information from Data Files” on page 242 in IBM Visualization Data Explorer User’s
Guide.

Note: This derivation feature is not available with the Data Prompter.

 Importing Data

Examples 6 and 7. Vector Data
The General Array Importer supports three representations, or “styles,” of vector
data: record, record-vector, and series-vector. The first two are illustrated here.
For the third, see “interleaving” on page 90.

Which representation matches the data depends on a characteristic called
interleaving. In record interleaving, the data for each vector component are stored
together in individual blocks (e.g., X0, X1,..., Xn, Y0, Y1,..., Yn). In
record-vector interleaving, the components of each vector are stored consecutively
(e.g., X0Y0, X1Y1,..., XnYn).

The following pair of examples illustrates the differences between the two
representations and between the header files used to import them. The header
files are identical in that they both specify a unit 2-vector that parallels the x-axis
and is defined on a 5 x 4 regular grid. That is, the data consists of 20 instances of
the vector [1 0].

In Example 7, the interleaving style of the data file is record:

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1

ð ð ð ð ð ð ð ð

ð ð ð ð ð ð ð ð

ð ð ð ð

 Chapter 5. Importing Data 71

1. In the Data Prompter simplified dialog box, select New in the File pull-down
menu (this selection clears the dialog box of any information from a previous
file).

2. Enter the path name of the data file in the Data file field:

/usr/lpp/dx/samples/data/record_vectordata1.

3. Enter the values “5” and “4,” in that order, in the first two Grid size fields.
(Note that the origin-delta values default to [0 1].)

4. Add a field to the Field list by typing a name (e.g. field0) in the Field name text
field, and then pressing the Add button.

5. Change Type (right-hand panel) to “int.”

Note: To implement this change, you must click on Modify at the bottom of
the dialog box. However, you can delay implementation to Step 5, and
implement both steps at the same time.

6. Change Structure (right-hand panel) to “2-vector.” To implement this change,
click on Modify at the bottom of the dialog box (note the instruction there).

7. Step 5 activates the Vector interleaving button. Select
X0,X1,...,Xn,Y0,Y1,...,Yn (the notation used for record style).

8. Repeat Example 1, Step 10 (see To save the header file on page 68), to save
the header file, which should look like:

file = /usr/lpp/dx/samples/data/record_vectordata1

grid = 5 x 4

format = text

interleaving = record

majority = row

field = fieldð

structure = 2-vector

type = int

dependency = positions

positions = regular, regular, ð, 1, ð, 1

end

In Example 7, the interleaving style of the data file is record-vector:

1 ð 1 ð 1 ð 1 ð 1 ð

1 ð 1 ð 1 ð 1 ð 1 ð

1 ð 1 ð 1 ð 1 ð 1 ð

1 ð 1 ð 1 ð 1 ð 1 ð

1. If you have not closed the simplified dialog box from Example 5, all you need
do is:

a. Change the path name for the data file (in the Data file field) to:

/usr/lpp/dx/samples/data/record_vectordata2.

b. For Vector interleaving, select X0Y0,X1Y1,...,XnYn (the notation used for
record-vector style).

Otherwise you can repeat Example 6 (or open the header file
record_vectordata1) and make the appropriate changes.

2. Repeat Example 1, Step 10 (see To save the header file on page 68), to save
the new header file, which should look like the one shown at the top of the next
page.

72 IBM Visualization Data Explorer: QuickStart Guide

file = /usr/lpp/dx/samples/data/record_vectordata2

grid = 5 x 4

format = text

interleaving = record-vector

majority = row

field = fieldð

structure = 2-vector

type = int

dependency = positions

positions = regular, regular, ð, 1, ð, 1

end

Note: If the interleaving is not specified, the default is record-vector.

Example 8. Series Data
This example illustrates how a 7-step time series of a single scalar field might be
imported. The field is on a regular 5 × 5 grid, the data are connections dependent,
and the style is record.

Time-Series Data

Time Step 1

12 9 14 1 1ð 16 7 2ð

19 6 11 15 18 8 13 17

Time Step 2

12 9 1 21 1ð 16 7 1

19 6 11 15 18 8 13 17

Time Step 3

12 1 14 21 1ð 16 1 2ð

19 6 11 1 18 8 13 17

Time Step 4

 1 9 14 21 16 1 7 2ð

19 6 1 15 18 8 13 1

Time Step 5

12 9 14 21 1 16 7 2ð

 1 6 11 15 18 1 13 17

Time Step 6

12 9 14 21 1ð 16 7 2ð

 1 6 11 15 18 1 13 17

Time Step 7

12 9 14 21 1ð 16 7 2ð

19 6 11 15 1 8 13 17

1. In the Data Prompter initial dialog box, select Grid or Scattered File, select
the leftmost button in the Grid type row (regular grid) and deactivate the
Single time step toggle button.

2. Confirm that the Block toggle button is activated and click on Describe Data.
The Full prompter dialog box appears. (Because this example requires the full
prompter, the simplified dialog box is not accessible.)

3. Enter the path name of the data file in the Data file field:

/usr/lpp/dx/samples/data/record_series

4. Activate the Header toggle button.

5. Step 4 also enables the # of bytes button to the right. Click on this button and
select string marker.

 Importing Data

 Chapter 5. Importing Data 73

6. Enter “Time Step 1 \n” in the associated text field to specify that the data file is
to be read starting with the line after “Time Step 1” (see Note). Alternatively,
selecting # of lines and specifying the value “2” in the text field would
produce the same result.

Note: The new-line character “\n” must be included in the specification, and
the spacing between it and the marker must match that in the data file (e.g., if
“Time Step 1” and “\n” are separated by three spaces in the file, they must be
separated by three spaces in the specification). This spacing is easily
determined in the Data Browser by placing the cursor at each point and reading
the corresponding offset value (see Figure 18 on page 110).

7. Enter the value “5” in each of the first two Grid size fields.

8. Activate the Series toggle button and specify the number of series members by
entering the value “7” in the associated n field. (Leave the start and delta
fields unchanged.)

9. Activate the Series separator toggle button, select # of lines, and enter the
value “1” in the associated text field. (When the Import module reads the data
file, it will skip the lines “Time Step 2,” “Time Step 3,” and so on.)

10. Change Dependency from “positions” to “connections.” To confirm this change,
click on Modify at the bottom of the dialog box (note the instruction there).

11. Repeat Example 1, Step 10 (see To save the header file on page 68), to save
the header file, which should look like:

file = /usr/lpp/dx/samples/data/record_series

grid = 5 x 5

format = text

interleaving = record

majority = row

header = marker “Time Step 1 \n”

series = 7, 1, 1, separator = lines 1

field = fieldð

structure = scalar

type = float

dependency = connections

positions = regular, regular, ð, 1, ð, 1

end

Note: For scalar data, as in this example, the interleaving keyword is not
required (it defaults to record). However, when series data include vectors, this
keyword must be included and the appropriate value specified. For more
information, see “interleaving” on page 90.

Example 9. Data and Header in the Same File
The header and end keywords make it possible to combine header information and
data in the same file.

Note: Although the General Array Importer is designed to process files that
contain both header information and data, the Data Prompter is not. It cannot
create them or read them in. Such files, like the one in this example, must be
created with an editor.

74 IBM Visualization Data Explorer: QuickStart Guide

The Importer disregards this line, since it is a comment line.

grid = 5 x 5

dependency = connections

type = byte

structure = scalar

format = ascii

header = marker “Start data \n”

end

There may be comments about the data here (e.g., who created it and

when). These will be passed over because of the marker specified

in the header keyword statement.

Start data

17 8 11 4 12 18 3 9

1ð 2 19 13 1 7 14 2ð

The end keyword marks the end of the header section. The header keyword
statement specifies “Start data” as the search string and the next line as the start of
the actual data. Note that if the data starts on the same line, the new-line
character (\n) is not required as part of the marker (see also Step 6 of Example 8 in
Enter “Time Step 1 \n” on page 74).

The “positions” keyword, omitted in this example, defaults to an origin of [0 0] and
deltas of [1 1].

 Importing Data

Record Style: Multivariable Data
To import record-style data, you must set the interleaving keyword to record,
record-vector, or series-vector. (When using the Data Prompter, select Block for
Field interleaving.) If the data includes vectors, select the appropriate vector
interleaving, as discussed in “Examples 6 and 7. Vector Data” on page 71; see
also “interleaving” on page 90.

Example 1. Multiple Scalar Fields
This example illustrates the importation of multiple scalar fields. The grid is 4 × 2 ×
3, with an origin of [0 0 0] and deltas of [1 1 1]. The three data variables are
scalar. The data file looks like:

Energy

2.158719 1.45419 1.5665ð9 1.551361 2.215ð95 1.726923

2.ð8ð461 1.418617 1.3732ð6 2.231642 1.316575 1.445211

1.673182 1.445737 1.82ð333 2.167849 1.721611 1.5549ð6

1.6ð4594 2.ð61ð92 1.398391 2.ð62ð42 1.996196 1.5ð964

Pressure

34.81398 18.81529 29.65139 42.499 22.96ð53 31.416ð4

19.92936 27.79935 26.34873 28.91ð81 21.17855 28.89354

6.32ðð79 43.9ð68 6.597938 2ð.41342 14.83351 43.533ð9

16.369ð1 18.19812 4.628566 43.64742 44.99699 26.32183

Temperature

295.3329 3ð2.5431 3ð1.835 296.ð127 297.8344 295.5451

3ð1.6786 298.4496 3ð2.ð944 296.7458 296.3459 296.4179

3ð3.1223 3ðð.3ð94 297.9714 3ðð.ð774 299.1322 296.9368

 3ð2.ð96 294.8137 3ðð.662 299.5744 3ð4.1986 3ð2.4216

The header file to import this data should look like:

 Chapter 5. Importing Data 75

file = /usr/lpp/dx/samples/data/record_multiscalar

grid = 4 x 2 x 3

format = text

interleaving = record

majority = row

header = lines 1

field = Energy, Pressure, Temperature

recordseparator = lines 1

end

Example 2. Cell-Centered Data
This example is identical to the preceding one except that each of the data
variables is dependent on the connections between data points rather than on their
positions. Thus there are only six data values per field (3 × 1 × 2). The data file
looks like:

Energy

2.158719 1.45419 1.5665ð9 1.551361 2.215ð95 1.726923

Pressure

34.81398 18.81529 29.65139 42.499 22.96ð53 31.416ð4

Temperature

295.3329 3ð2.5431 3ð1.835 296.ð127 297.8344 295.5451

The header file to import this data should look like:

file = /usr/lpp/dx/samples/data/record_multiscalardepconn

grid = 4 x 2 x 3

format = test

interleaving = record

majority = row

header = lines 1

field = Energy, Pressure, Temperature

recordseparator = lines 1

dependency = connections

end

Example 3. Multiple Scalars with Mixed Dependencies
This example differs from the preceding one in that Energy and Temperature are
dependent on the positions of the grid, while Pressure is dependent on the grid
elements (connection dependent). The data file looks like:

Energy

2.158719 1.45419 1.5665ð9 1.551361 2.215ð95 1.726923

2.ð8ð461 1.418617 1.3732ð6 2.231642 1.316575 1.445211

1.673182 1.445737 1.82ð333 2.167849 1.721611 1.5549ð6

1.6ð4594 2.ð61ð92 1.398391 2.ð62ð42 1.996196 1.5ð964

Pressure

34.81398 18.81529 29.65139 42.499 22.96ð53 31.416ð4

Temperature

295.3329 3ð2.5431 3ð1.835 296.ð127 297.8344 295.5451

3ð1.6786 298.4496 3ð2.ð944 296.7458 296.3459 296.4179

3ð3.1223 3ðð.3ð94 297.9714 3ðð.ð774 299.1322 296.9368

 3ð2.ð96 294.8137 3ðð.662 299.5744 3ð4.1986 3ð2.4216

The header file looks like the one shown at the top of the next page.

76 IBM Visualization Data Explorer: QuickStart Guide

file = /usr/lpp/dx/samples/data/record_multiscalarmixed

grid = 4 x 2 x 3

format = text

interleaving = record

majority = row

header = lines 1

field = Energy, Pressure, Temperature

dependency = positions, connections, positions

recordseparator = lines 1

end

Examples 4 and 5. Scalar and Vector Data
This example uses the same grid as the previous 3, but here the second data field
(velocity) consists of 2-vectors. In Example 4, all the x-components of the
2-vectors are listed first, followed by all the y-components. For example, the x- and
y-components of the first 2-vector are 34.81398 and 2.158719, respectively.

Energy

2.158719 1.45419 1.5665ð9 1.551361 2.215ð95 1.726923

2.ð8ð461 1.418617 1.3732ð6 2.231642 1.316575 1.445211

1.673182 1.445737 1.82ð333 2.167849 1.721611 1.5549ð6

1.6ð4594 2.ð61ð92 1.398391 2.ð62ð42 1.996196 1.5ð964ð

Velocity

34.81398 18.81529 29.65139 42.499 22.96ð53 31.416ð4

19.92936 27.79935 26.34873 28.91ð81 21.17855 28.89354

6.32ðð79 43.9ð68 6.597938 2ð.41342 14.83351 43.533ð9

16.369ð1 18.19812 4.628566 43.64742 44.99699 26.32183

2.158719 1.45419 1.5665ð9 1.551361 2.215ð95 1.726923

2.ð8ð461 1.418617 1.3732ð6 2.231642 1.316575 1.445211

1.673182 1.445737 1.82ð333 2.167849 1.721611 1.5549ð6

1.6ð4594 2.ð61ð92 1.398391 2.ð62ð42 1.996196 1.5ð964ð

Temperature

295.3329 3ð2.5431 3ð1.835 296.ð127 297.8344 295.5451

3ð1.6786 298.4496 3ð2.ð944 296.7458 296.3459 296.4179

3ð3.1223 3ðð.3ð94 297.9714 3ðð.ð774 299.1322 296.9368

3ð2.ð96ð 294.8137 3ðð.662 299.5744 3ð4.1986 3ð2.4216

The header file should look like:

file = /usr/lpp/dx/samples/data/record_scalarvector1

grid = 4 x 2 x 3

format = text

interleaving = record

majority = row

header = lines 1

field = Energy, Velocity, Temperature

structure = scalar, 2-vector, scalar

recordseparator = lines 1, lines ð, lines 1

end

Note that the interleaving specified for the vectors (line 4) is record (see
“interleaving” on page 90) and that the record separator (line 9) specifies: one (1)
line separating the Energy and Velocity data; no lines separating the records
containing the components of the Velocity data; and one (1) line separating the
Velocity and the Temperature data (see “recordseparator” on page 92).

 Importing Data

 Chapter 5. Importing Data 77

The data values in Example 5 are the same as those in Example 4, but the
components of each vector in the Velocity field appear together (e.g., 34.813980 is
followed by 2.158719 in the same row):

Energy

 2.158719 1.45419ð 1.5665ð9 1.551361 2.215ð95 1.726923

 2.ð8ð461 1.418617 1.3732ð6 2.231642 1.316575 1.445211

 1.673182 1.445737 1.82ð333 2.167849 1.721611 1.5549ð6

 1.6ð4594 2.ð61ð92 1.398391 2.ð62ð42 1.996196 1.5ð964ð

Velocity

 34.81398ð 2.158719 18.81529ð 1.45419ð 29.65139ð 1.5665ð9

 42.499ðð1 1.551361 22.96ð529 2.215ð95 31.416ð4ð 1.726923

 19.929359 2.ð8ð461 27.799351 1.418617 26.34873ð 1.3732ð6

 28.91ð81ð 2.231642 21.178551 1.316575 28.893539 1.445211

 6.32ðð79 1.673182 43.9ð6799 1.445737 6.597938 1.82ð333

 2ð.41342ð 2.167849 14.83351ð 1.721611 43.533ð89 1.5549ð6

 16.369ð11 1.6ð4594 18.19812ð 2.ð61ð92 4.628566 1.398391

 43.647419 2.ð62ð42 44.99699ð 1.996196 26.321831 1.5ð964ð

Temperature

295.332886 3ð2.543ð91 3ð1.834991 296.ð12695 297.834412 295.5451ð5

3ð1.678589 298.449585 3ð2.ð94391 296.745789 296.345886 296.4179ð8

3ð3.122314 3ðð.3ð9387 297.9714ð5 3ðð.ð77393 299.1322ð2 296.936798

3ð2.ð96ðð8 294.81369ð 3ðð.661987 299.5744ð2 3ð4.1986ð8 3ð2.4216ðð

The header file should look like:

file = /usr/lpp/dx/samples/data/record_scalarvector2

grid = 4 x 2 x 3

format = text

interleaving = record-vector

majority = row

header = lines 1

structure = scalar, 2-vector, scalar

field = Energy, Velocity, Temperature

recordseparator = lines 1

end

Note that the interleaving specified for the vectors (line 4) has been changed to
record-vector and that the record separator (line 9) specifies one (1) line separating
successive records.

Example 6. Deformed (Warped) Regular Grid
A deformed regular grid (sometimes referred to as a warped grid) is one in which
the positions are irregular but the connections are regular. In this example the grid
is 5 × 4. The data consists of three records, the first two of which contain scalar
data defined on the grid. The third contains 2-vector values defining the grid
positions. The Data Prompter uses the reserved word locations as a field name
for the x,y values of the grid positions. The data file contains no descriptive
information.

1. In the Data Prompter initial dialog box, click on Grid or Scattered File, then
on the button representing deformed data (third from the left) in the row labeled
Grid type.

2. Set Number of variables to “2.”
3. Step 1 automatically activates the Positions in data file toggle button (the

positions of warped regular data are assumed to be listed in the data file) and

78 IBM Visualization Data Explorer: QuickStart Guide

displays a Dimension stepper button. Set the Dimension value to “2” for
2-dimensional (x,y) data. .

4. For Data organization, confirm that the Block (i.e., record) toggle button is
activated.

5. Click on Data Prompter to bring up the simplified data prompter.
6. Enter the path name of the data file in the Data file field:

/usr/lpp/dx/samples/data/record_deformed

7. Enter the values “5,” and “4,” in that order, in the first two Grid size fields.
8. Confirm that Data format, Data order, and Vector interleaving are set

respectively to Text, Row, and record-vector (X0Y0, X1Y1, ...).
9. In the Field list, click on “locations” and use the “Move field” stepper arrows

to position it after “field1” (i.e., at the bottom of the list). This change is
necessary to reflect the actual data file, where the two scalar fields precede the
x,y positions. (By default, the Data Prompter lists “locations” as the first field.)

10. Click on “field0” in the list and then change the name to “rainfall” in the Field
name field. To confirm this change, click on Modify at the bottom of the dialog
box (note the instruction there).

11. Now change “field1” to “temperature” and the Type option from “float” to “int”
(the temperature values are integers). These changes can be confirmed
together by clicking on Modify at the bottom of the panel.

12. Save the header file (Step 10 of Example 1 in To save the header file on
page 68), which should look like:

file = /usr/lpp/dx/samples/data/record_deformed

grid = 5 x 4

format = text

interleaving = record-vector

majority = row

field = rainfall, temperature, locations

structure = scalar, scalar, 2-vector

type = float, int, float

dependency = positions, positions, positions

end

 Importing Data

Example 7. Scattered Data
This example illustrating the importation of scattered data differs from Example 6 in
only a few details, mainly in specifying the number of data points instead of the
dimensions of a data grid.

1. In the Data Prompter initial dialog box, select Grid or Scattered File, then
click on the rightmost button (scattered data) in the row labeled Grid type.

2. Set Number of variables to “2.”

3. Activate the Positions in data file toggle button and set the Dimension value
to “2”.

4. Repeat Steps 5 through 11 of Example 6, with the following exception: in Step
7, enter the value “20” in the # of points field (this change from Example 6 is
a result of the original selection for scattered data in the initial dialog box).

The header file should look like:

 Chapter 5. Importing Data 79

file = /usr/lpp/dx/samples/data/record_deformed

points = 2ð

format = text

interleaving = record-vector

field = rainfall, temperature, locations

structure = scalar, scalar, 2-vector

type = float, int, float

dependency = positions, positions, positions

end

Example 8. Using the Block Keyword
The block keyword is used with record-style, fixed-format ASCII data to skip
information in a block of data. For example, consider the following data file:

row 1 temperature 39 29 33 56 32

row 2 temperature 32 33 25 33 22

row 3 temperature 31 23 41 53 19

row 4 temperature 43 59 43 21 28

row 5 temperature 23 19 35 46 32

1. In the Data Prompter initial dialog box, select Grid or Scattered File, then
ensure that the leftmost button in the row labeled Grid type is selected.

2. Click on Data Prompter to bring up the simplified prompter.

3. Enter the path name of the data file in the data file field:

/usr/lpp/dx/samples/data/block_example.data

4. Activate the header toggle button, reset # of bytes to # of lines, and type 1
in the associated field.

5. Set Grid size to 5 × 5.

6. Now click on Full prompter in the Options pull-down menu.

7. Activate the Block toggle button (right-hand panel).

8. Set skip to 17, # elem to 5, and width to 3.

9. Repeat Example 1, Step 10 (To save the header file on page 68), to save the
header file, which should look like:

file = /usr/lpp/dx/samples/data/block_example.data

grid = 5 x 5

format = text

interleaving = record

majority = row

header = lines 1

field = fieldð

structure = scalar

type = int

dependency = positions

block = 17, 5, 3

positions = regular, regular, ð, 1, ð, 1

end

The block statement instructs the importer to skip 17 characters and read 5
(temperature) values (per line in this case), reading each value from a field of three
characters.

80 IBM Visualization Data Explorer: QuickStart Guide

 Columnar Style
Importing columnar-style data requires setting the interleaving keyword to “field”:
Activate the Columnar toggle button in the Data Prompter initial dialog box or select
“Field” for the Field interleaving option in the full prompter.

Example 1. Scalar and Vector Data on a Regular Grid.
This example illustrates the importation of a data file that contains two variables
(pressure and velocity) in spreadsheet style. The data are in row majority order
(last index varies fastest) and organized in four columns: the first contains the
pressure data; the other three, the velocity components. The grid is 5 × 8 × 6.

1. In the Data Prompter initial dialog box, select Grid or Scattered File, then
select the leftmost button in the row labeled Grid type (regular grid).

2. Set Number of variables to “2.”
3. For Data organization, activate the Columnar toggle button.
4. Click on Describe Data to bring up the simplified prompter.
5. Enter the path name of the data file in the Data file field:

/usr/lpp/dx/samples/data/spreadsheet_2var

6. Enter the values “5,” “8,” and “6,” in that order, in the first three Grid size
fields.

7. In the Field list, change the name “field0” to “pressure” and confirm the
change by clicking on the Modify button at the bottom of the panel.

8. Change the name of “field1” to “velocity” and its Structure to “3-vector.” (See
Steps 9 through 11 of Example 6 in the preceding section, “Example 6.
Deformed (Warped) Regular Grid” on page 78, for procedure.)

9. Save the header file (Step 10 of Example 1 in To save the header file on
page 68), which should look like:

file = /usr/lpp/dx/samples/data/spreadsheet_2var

grid = 5 x 8 x 6

format = text

interleaving = field

majority = row

field = temperature, velocity

structure = scalar, 3-vector

type = float, float

dependency = positions, positions

positions = regular, regular, regular, ð, 1, ð, 1, ð, 1

end

 Importing Data

Example 2. Deformed (Warped) Regular Grid
This example differs from Example 6 in the preceding section (“Example 6.
Deformed (Warped) Regular Grid” on page 78) in its data style (spreadsheet),
smaller data grid (5 × 4), and number of variables (1). Follow the first 7 steps of
that example, except for the following:

� In Step 2, set Number of variables to “1.”
� In Step 4, activate the Columnar toggle button.
� In Step 6, use the path name:

/usr/lpp/dx/samples/data/spreadsheet_deformed.

� In Step 7, use the values “3” and “4.”

 Chapter 5. Importing Data 81

The header file should look like:

file = /usr/lpp/dx/samples/data/spreadsheet_deformed

grid = 3 x 4

format = text

interleaving = field

majority = row

field = locations, fieldð

structure = 2-vector, scalar

type = float, float

end

Example 3. Scattered Scalar Data
This example uses the same data set as Example 2 but treats the values as
scattered data points. The data file contains an x,y position followed by a data
value. There are no implied connections for these data.

1. In the Data Prompter initial dialog box:
a. Select Grid or Scattered File, then select for scattered data (rightmost

grid button).
b. Activate the Position toggle button.
c. Set Dimension to “2.”
d. Activate the Spreadsheet toggle button.
e. Click on Describe Data to bring up the simplified data prompter.

2. Enter the path name used in Example 2.
3. Enter “12” in the # of points field.
4. Save the header file (Step 10 of Example 1 in To save the header file on

page 68), which should look like:

file = /usr/lpp/dx/samples/data/spreadsheet_deformed

points = 12

format = text

interleaving = field

field = locations, fieldð

structure = 2-vector, scalar

type = float, float

end

Example 4. Handling Interspersed Text
The layout keyword is used to specify which locations in a data file are to be read,
thereby avoiding interspersed text. In the example data file shown here, there are
no implied connections between data values.

1. In the Data Prompter initial dialog box:
a. Select Grid or Scattered File, then select for scattered data (rightmost

grid button).
b. Activate the Position toggle button.
c. Set Number of variables to “1.”
d. The data positions (latitude and longitude) are in the data file and are

2-dimensional: set Dimension to “2.”
e. Activate the Columnar toggle button.
f. Click on Describe Data to bring up the simplified data prompter.

2. In the Data file field enter the path name:

/usr/lpp/dx/samples/data/CO2fragment.lis

82 IBM Visualization Data Explorer: QuickStart Guide

3. Activate the Header toggle button, select the “String marker” option, and enter
“CO2_CONC \n” in the associated text field. (Note that the marker text is the
heading for the third column of data and that the reading of data will start after
the new-line character, at the point marked by “\” on the following line. See
also Step 6 of Example 7 in Enter “Time Step 1 \n” on page 74.)

Note: The asterisk (\) at the beginning of the first data line and the interval scale
following the data are for reference purposes only and do not appear in the actual
file (see Steps 3 and 5f–j in this example).

 VARIABLES AND SPECIFIED RANGES

 EPOCH ð1-Jul-1983 ðð:ðð:ðð.ððð 31-Dec-1987 ðð:ðð:ðð.ððð

 LATITUDE -9ð.ðð 9ð.ðð

 LONGITUD -18ð.ðð 18ð.ðð

 CO2_CONC -1ðððð.ð 1ðððð.ð

EPOCH LATITUDE LONGITUD CO2_CONC

\ð1-Jul-1983 ðð:ðð:ðð.ððð -37.95 77.53 341.4

 ð1-Jul-1983 ðð:ðð:ðð.ððð -89.98 -24.8ð 341.ð

 ð1-Jul-1983 ðð:ðð:ðð.ððð -7.92 -14.42 343.4

 ð1-Jul-1983 ðð:ðð:ðð.ððð -4ð.68 144.68 -1ðð.ð

 ð1-Jul-1983 ðð:ðð:ðð.ððð 19.52 -154.82 341.9

 ð1-Jul-1983 ðð:ðð:ðð.ððð -14.25 -17ð.57 342.ð

 ð1-Jul-1983 ðð:ðð:ðð.ððð 2.ðð -157.3ð -1ðð.ð

 ð1-Jul-1983 ðð:ðð:ðð.ððð 55.2ð -162.72 335.3

 ð1-Jul-1983 ðð:ðð:ðð.ððð -75.67 -27.ðð 341.7

 ð1-Jul-1983 ðð:ðð:ðð.ððð -43.83 -172.63 341.3

 ð1-Jul-1983 ðð:ðð:ðð.ððð 25.67 -8ð.17 343.8

 ð1-Jul-1983 ðð:ðð:ðð.ððð -4.67 55.17 339.1

 ð1-Jul-1983 ðð:ðð:ðð.ððð 13.43 144.78 344.ð

 ð1-Jul-1983 ðð:ðð:ðð.ððð 19.53 -155.58 343.5

 ð1-Jul-1983 ðð:ðð:ðð.ððð 76.23 -119.33 339.8

 ð1-Jul-1983 ðð:ðð:ðð.ððð 4ð.ð5 -1ð5.63 339.5

 ð1-Jul-1983 ðð:ðð:ðð.ððð 66.ðð 2.ðð 338.7

 ð1-Jul-1983 ðð:ðð:ðð.ððð -64.92 -64.ðð 341.4

 ð1-Jul-1983 ðð:ðð:ðð.ððð 71.32 -156.6ð 34ð.1

 ð1-Jul-1983 ðð:ðð:ðð.ððð 17.75 -64.77 342.3

 ð1-Jul-1983 ðð:ðð:ðð.ððð 38.75 -27.ð8 341.1

|-----------skip 33-------------| width 12 | width 12 | width 1ð |

4. Enter “21” in the # of points field.
5. Use the layout option to “skip” interspersed text:

a. Select Full prompter from the Options menu.
b. Select “locations” in the Field list of the Data Prompter.
c. Activate the Layout toggle button (in the right-hand panel of the prompter).
d. Bring up the Browser for the data file by clicking on the ellipsis button (...)

next to the Data file field.
e. Click on Browser... to view the data file.
f. In the data file, position the cursor at the beginning of the first data value in

the first data line (-37.95) and note the Byte Offsets value (counting from
the start of the line). Enter this number (33) in the skip field of the Layout
option.

g. Enter the value “12” in the width field of the Layout option. Since the
latitude-longitude pairs are 2-vectors, the Data Prompter will read the

 Importing Data

 Chapter 5. Importing Data 83

specified width twice in succession, once for each component. (Thus, the
Data Prompter skips 33 characters, reads 12 characters, and then reads 12
more, as specified by the first layout settings. See the marked intervals at
the bottom of the data file in skip 33 on page 83.)

h. To confirm these changes, click on Modify at the bottom of the panel.
i. Select “field0” in the Field list and rename it “CO2_concentration.”
j. Enter the value “0” (zero) in the skip field and “10” in the width field. (Now

the Data Prompter skips zero characters and then reads 10 characters.
See the marked intervals at the bottom of the data file in skip 33 on
page 83.)

k. To confirm these changes, click on Modify at the bottom of the panel.
6. Save the header file (Step 10 of Example 1 in To save the header file on

page 68), which should look like:

file = /usr/lpp/dx/samples/data/CO2fragment.lis

points = 21

format = text

interleaving = field

header = marker “CO2_CONC \n”

field = locations, CO2_concentration

structure = 2-vector, scalar

type = float, float

layout = 33, 12, ð, 1ð

end

Example 5. Time Series with Interspersed Text
The 21 lines of data in the preceding example represent a portion of a larger file
(/usr/lpp/dx/samples/data/CO2.lis) containing a time series with 53 members.

1. In the Data Prompter initial dialog box, select Grid or Scattered File, then
click on Describe Data to bring up the simplified Data Prompter.

2. Select Open from the File menu.

3. In the Open a Data Prompter Header dialog box, select
CO2fragment.lis.general in the Files list and then click on OK.

4. Change the path name to:

/usr/lpp/dx/samples/data/CO2.lis

5. Activate the Series toggle button and change the value in the n field from “1” to
“53.” Do not change the start or delta field.

6. Save the header file (Step 10 of Example 1 in To save the header file on
page 68), which should look like:

84 IBM Visualization Data Explorer: QuickStart Guide

file = /usr/lpp/dx/samples/data/CO2.lis

points = 21

format = text

interleaving = field

header = marker "CO2_CONC \n"

series = 53, 1, 1

field = locations, CO2_concentration

structure = 2-vector, scalar

type = float, float

dependency = positions, positions

layout = 33, 12, ð, 1ð

end

Example 6. Column Majority Data
The General Array Importer assumes that the order of the data it imports is row
majority (last index varies fastest). That is, on a 2-dimensional n × m grid, the
order of data is:

f(X0,Y0), f(X0,Y1), ..., f(X0,Ym), f(X1,Y0), f(X1,Y1), ...

If the order of data is column majority (first index varies fastest), the order of data
is:

f(X0,Y0), f(X1,Y0), ..., f(Xn,Y0), f(X0,Y1), f(X1, Y1), ...

The General Array Importer will accept column-majority data if you select “Column”
for the Data order option in the Data Prompter.

The file /usr/lpp/dx/samples/data/temp_wind.lis. contains data in column
majority order. A header file that imports this data is:

file = temp_wind.lis

grid = 144 x 73

format = text

interleaving = field

majority = column

header = lines 9

field = temperature, wind_velocity

structure = scalar, 2-vector

type = float, float

dependency = positions, positions

layout = 39, 14, ð, 14

positions = regular, regular, -178.75, 2.5, 9ð.ð, -2.5

end

 Importing Data

5.3 Header File Syntax: Keyword Statements
The header of a General Array Importer file contains two or more of the keyword
statements in the list that follows. The statements from block through type are
listed in alphabetical order for convenient reference (they can be listed in any order
in a header file). The placement of the first two statements in the list (file and
grid|points) and the last two (positions and end) reflect syntactic requirements.
The descriptions that follow this list occur in the same partly alphabetized order.

 Chapter 5. Importing Data 85

Notes:

1. A statement or part of a statement enclosed in brackets ([]) is optional.
2. Except for positions, no keyword statement can exceed one line in length.
3. Any line beginning with a pound sign (#) is interpreted as a comment and

ignored.

file = filename

grid = numx x numy x numz x...

or
points = n

block = skip1, elements1, width1, skip2, elements2, width2, ..., skipf, elementsf, widthf

dependency = dependency1, dependency2, ..., dependencyf

field = name1, name2, ..., namef

format =

msb
lsb

ascii
text
binary
ieee

header =
bytes n
lines n
marker “string”

interleaving =

field
record
record-vector
series-vector

layout = skip1, width1, skip2, width2, ..., skipf, widthf

majority = row
column

recordseparator =
bytes n
lines n
marker “string”

,
bytes n
lines n
marker “string”

, ...

series = t

, start, delta

, separator =
bytes n
lines n
marker “string”

structure = structure1, structure2, ..., structuref

type = type1, type2, ..., typef

positions =

origin1, delta1, ..., origind, deltad
positiontype1, positiontype2, ..., positiontyped, position1, position2, ..., positionk
position1, position2, ..., positiong

end

 file
file = filename

Function: Specifies the name of the file (including the path, if any) containing the
data to be imported. The Importer searches the directory where the header
file was found and any paths specified with the DXDATA environment

86 IBM Visualization Data Explorer: QuickStart Guide

variable (see the appropriate appendix in IBM Visualization Data Explorer
User’s Guide for information on environment variables).

Use: Required unless the header file contains an end statement. If this statement
is omitted, the Importer assumes that the data are contained in the same file
as the header and that they begin on the line immediately after the end
statement or at the point specified by a header statement.

 grid
grid = numx x numy x numz x...

Function: Specifies the size and dimensions of the grid containing the data to be
imported.

Use: Required unless the header file contains a points statement.

Notes:

1. The num parameter is an integer specifying the number of coordinate points for
a particular dimension (e.g., numx). The number of dimensions is implicitly
specified by the number of such values provided. For example,

grid = 2 x 2

specifies a regular grid of 4 (four) points (the x between integers is required,
but the blank spaces are optional.)

2. The grid keyword (in contrast to points) implies connections between data
points. An n-dimensional cuboid is assumed for connections. For example, a
1-dimensional grid generates a line connecting the positions.

3. You can also specify that the number of grid elements are to be found in the
data file. For the syntax, see B.1, “General Array Importer: Keyword
Information from Data Files” on page 242 in IBM Visualization Data Explorer
User’s Guide.

 Importing Data

 points
points = n

Function: Specifies the number of data points to be imported.
Use: Required unless the header file contains a grid statement.

Notes:

1. The points keyword (unlike grid) implies an absence of connections between
data points.

2. Unless the locations reserved word is used in the field keyword statement
(see “field” on page 88), the positions are 1-dimensional. If this reserved word
is not used, 1-dimensional positions can be specified with the positions
keyword (see “positions” on page 94). Otherwise, positions are assumed to be
regular, with an origin of 0 (zero) and a delta of 1 (one).

3. You can also specify that the number of points is to be found in the data file.
For the syntax, see B.1, “General Array Importer: Keyword Information from
Data Files” on page 242 in IBM Visualization Data Explorer User’s Guide.

 Chapter 5. Importing Data 87

 block

block = skip1, elements1, width1, skip2, elements2, width2, ..., skipf, elementsf, widthf

Function: Specifies characteristics of each data field being imported. This keyword
applies only to fixed-format ASCII data with record, record-vector, or
series-vector interleaving.

Use: Optional.

Note: All three parameters take integer values. (Comma separators are optional.)

� skip specifies the number of leading characters (in a line) to be passed over
before reading the data in a line or in a record.

� elements specifies the number of data values stored in each line or in an entire
record.

� width specifies the number of characters to be read for each element of a
given field.

 dependency

dependency = dependency1, dependency2, ..., dependencyf

Function: Specifies the dependencies of the data fields being imported.
Use: Optional. By default, data are assumed to be position dependent. Only if

the header file also contains a grid statement (see “grid” on page 87) may
you specify connections (cell-centered) dependency (a points statement
implies positions dependency).

Notes:

1. For field-interleaved data, all fields must have the same dependency.
2. The locations field (see “field Keyword Statement,” Note 4) must be specified

as position dependent.
3. Comma separators are optional.

 field

field = name1, name2, ..., namef

Function: Specifies the name and number of individual fields in a data file.
Use: Optional. If this keyword is not used, the number of fields is derived from

other keywords (e.g., structure or type).

Notes:

1. The values for the name parameter are strings separated by commas and
without quotation marks.

2. You must name all the fields in the data file.
3. The field names can be used later to refer to individual fields. For example, if

you use the Import module to import the data all at once, you can use the
Select module to separate out each field by name. Or you can specify the
names of the fields you want to import as the variable parameter to the Import
module. For more information, see “Import” on page 165 and “Select” on
page 291 in IBM Visualization Data Explorer User’s Reference.

4. If the position values are intermixed with the data in a file, you must specify the
positions as a field (instead of using the positions keyword). Use the reserved

88 IBM Visualization Data Explorer: QuickStart Guide

word locations for the field name. The corresponding value for the structure
keyword should specify the dimensionality of the positions (e.g., “2-vector”).

 format

format =

msb
lsb

ascii
text
binary
ieee

Function: Specifies the format and byte order of the data.
Use: Optional.

Notes:

1. The accepted values for byte order are msb (most significant byte first) and lsb
(least significant byte first). If the format is specified as binary, then the default
byte order is the host byte order (i.e., the byte order of the machine on which
the Import module is executing).

2. For specifying the data format, ascii and text are synonymous, as are binary
and ieee. The default is ascii. The supported binary form is IEEE.

 Importing Data

 header

header =
bytes n
lines n
marker “string”

Function: Specifies how much material the Importer must skip before it begins
reading data from a data file.

Use: Optional. By default, the Importer assumes that the data begin at the start of
the file.
� bytes n: the Importer will pass over n bytes (in a binary file) or n

characters (in an ASCII file) before it begins to read data.
� lines n: the Importer will pass over n lines before it begins to read data.
� marker “string”: the Importer will begin at the first character after the

specified string. Quotation marks are required for a string containing
blank spaces or commas.

Notes:

1. If the data begins on the line following a marker, be sure to specify a new-line
character (“\n”) as part of the string. Note also that the spacing between the
marker and the new-line character must be the same as that in the actual file.
This spacing is easily determined in the Data Browser by placing the cursor at
the end of the marker and then at the end of the line and reading the
corresponding offset values (see Figure 18 on page 110).

2. If the marker itself contains quotation marks or special characters, use the
escape character (“\”) to indicate them, as shown in the following table.

 Chapter 5. Importing Data 89

backslash \ \\

backspace BS \b

bit pattern ddd ddd

carriage return CR \r

double quote " \"

form feed FF \f

horizontal tab HT \t

newline NL (LF) \n

Note: An octal value (ddd) can be used to specify special
characters other than those shown here.

 interleaving

interleaving =

field
record
record-vector
series-vector

Function: Specifies to the Importer how the data in a data file are interleaved.
Use: Optional. By default, the Importer assumes that the interleaving is

record-vector.

Note: The examples presented here are based on a 1-dimensional grid with 10
elements and two series members:
...

grid = 1ð

series = 2

field = t, v

structure = scalar, 3-vector
...

where t is a scalar value and v is a vector with three components (vx, vy, and vz).
In the examples themselves, s represents a series member (0 or 1), and g
represents a grid element number (0 through 9). The interleaving options are as
follows:

field
Specifies column-oriented data such as that generated by a spreadsheet or
by data-listing software. There is a separate “column” for each of the two
fields with one element of each field per “row.” (For non-scalar data, as here,
there is a column for each vector component.) The number of rows
corresponds to the size of the grid multiplied by the number of series
members.

|- Field t -|--------------- Field v ---------------|

t(s=ð,g=ð), vx(s=ð,g=ð), vy(s=ð,g=ð), vz(s=ð,g=ð),

t(s=ð,g=1), vx(s=ð,g=1), vy(s=ð,g=1), vz(s=ð,g=1),
...

t(s=ð,g=9), vx(s=ð,g=9), vy(s=ð,g=9), vz(s=ð,g=9),

t(s=1,g=ð), vx(s=1,g=ð), vy(s=1,g=ð), vz(s=1,g=ð),

t(s=1,g=1), vx(s=1,g=1), vy(s=1,g=1), vz(s=1,g=1),
...

t(s=1,g=9), vx(s=1,g=9), vy(s=1,g=9), vz(s=1,g=9)

record
Specifies block or record-oriented data, where the values of all the elements
of all the fields corresponding to one member (e.g., a time step) are listed

90 IBM Visualization Data Explorer: QuickStart Guide

before the elements and fields of the next member. For non-scalar fields, all
the values of each vector component (e.g., all values of x) are listed in a
separate record rather than in tuples (as they are in record-vector data; see
below).

Note: For scalar fields, record and record-vector are the same.

t(s=ð,g=ð), t(s=ð,g=1), ..., t(s=ð,g=9),] Field t ┐

vx(s=ð,g=ð), vx(s=ð,g=1), ..., vx(s=ð,g=9), ┐ │ Member

vy(s=ð,g=ð), vy(s=ð,g=1), ..., vy(s=ð,g=9), │ Field v │ s0
vz(s=ð,g=ð), vz(s=ð,g=1), ..., vz(s=ð,g=9), ┘ ┘

t(s=1,g=ð), t(s=1,g=1), ..., t(s=1,g=9),] Field t ┐

vx(s=1,g=ð), vx(s=1,g=1), ..., vx(s=1,g=9), ┐ │ Member

vy(s=1,g=ð), vy(s=1,g=1), ..., vy(s=1,g=9), │ Field v │ s1.
vz(s=1,g=ð), vz(s=1,g=1), ..., vz(s=1,g=9) ┘ ┘

The remaining two options (record- and series-vector) apply to cases in which
vector components are stored together:

record-vector
Here the values of all the elements of all the components of all the fields
corresponding to each member (e.g., a time step) are listed before those
corresponding to the next member (e.g., all the data for s0 are listed first,
followed by all the data for s1).

In addition, the components of each vector are stored as tuples (in contrast to
the way they are stored in record data).

t(s=ð,g=ð), t(s=ð,g=1), ..., t(s=ð,g=9),] Field t ┐

vx(s=ð,g=ð), vy(s=ð,g=ð), vz(s=ð,g=ð), ┐ │

vx(s=ð,g=1), vy(s=ð,g=1), vz(s=ð,g=1), │ Field │ Member s0
... │ v │

vx(s=ð,g=9), vy(s=ð,g=9), vz(s=ð,g=9), ┘ ┘

t(s=1,g=ð), t(s=1,g=1), ..., t(s=1,g=9),] Field t ┐

vx(s=1,g=ð), vy(s=1,g=ð), vz(s=1,g=ð), ┐ │

vx(s=1,g=1), vy(s=1,g=1), vz(s=1,g=1), │ Field │ Member s1
... │ v │

vx(s=1,g=9), vy(s=1,g=9), vz(s=1,g=9) ┘ ┘

series-vector
Here the values of all the elements of all the members (e.g., time steps) are
listed for one field before those of the next field (e.g., all the data for field t
are listed first, followed by all the data for field v).

In addition, the components of a vector are stored as tuples rather than in
separate records (as they are stored in record data; see above).

t(s=ð,g=ð), t(s=ð,g=1), ..., t(s=ð,g=9), ┐ Field] Member s0
t(s=1,g=ð), t(s=1,g=1), ..., t(s=1,g=9), ┘ t] Member s1
vx(s=ð,g=ð), vy(s=ð,g=ð), vz(s=ð,g=ð), ┐ ┐

vx(s=ð,g=1), vy(s=ð,g=1), vz(s=ð,g=1), │ │ Member

... │ │ s0
vx(s=ð,g=9), vy(s=ð,g=9), vz(s=ð,g=9), │ Field ┘

vx(s=1,g=ð), vy(s=1,g=ð), vz(s=1,g=ð), │ v ┐

vx(s=1,g=1), vy(s=1,g=1), vz(s=1,g=1), │ │ Member

... │ │ s1
vx(s=1,g=9), vy(s=1,g=9), vz(s=1,g=9) ┘ ┘

 Importing Data

 Chapter 5. Importing Data 91

 layout

layout = skip1, width1, skip2, width2, ..., skipf, widthf

where f is the number of fields.

Function: Specifies the number of bytes (characters) the Importer must skip before
it begins to read a field’s data and then the number of bytes it should read
(i.e., the “width” of the data item).

Use: Optional. This keyword applies only to ASCII, field-interleaved data. If the
data is in ASCII format but the keyword is not used, the Importer assumes a
default of one or more blank spaces (space, tab, new line, or form feed) as
the delimiter between fields.

Notes:

1. The components of a vector must each be represented in the same number of
characters. Comma separators are optional.

The following statement tells the Importer to skip 10 characters, read one field
of 6 characters, skip 10 characters, and read another field of 4 characters.

layout = 1ð, 6, 1ð, 4

2. Because skip specifies the number of characters to be passed over before
each field, it does not apply to single elements of a vector field but to the field
as a whole. However, width applies to each element of the vector. For
example, the following statement tells the Importer to skip 10 characters, then
read a field 6 characters long:

layout = 1ð, 6

If the field v is a 2-vector, then each component (vx and vy) is 6 characters
long, for a total width of 12 characters.

3. If there are no spaces between two fields, specify the skip value as 0 (zero).

 majority

majority = row

column

Function: Specifies the organization of multidimensional arrays composing a data
field.

Use: Optional. The default is row (last dimension varies fastest, as in the C
programming language). Column majority means that the first dimension
varies fastest, as in the FORTRAN programming language.

Note: The maximum number of dimensions supported for column majority is 4.

 recordseparator

recordseparator =
bytes n
lines n
marker “string”

,
bytes n
lines n
marker “string”

...

Function: Specifies the separation between records.
Use: Optional. This keyword applies only to record and record-vector interleaving.

92 IBM Visualization Data Explorer: QuickStart Guide

Notes:

1. With differences to be noted here, the specification of separation is very much
like that of the header keyword (see “header” on page 89).

2. If all records are separated by the same amount, a single separator value
should be specified. For example, if each pair of successive records is
separated by two lines, then

recordseparator = lines 2

3. If the records are separated by different amounts, a value must be specified for
each of the separators:
� For record-vector data the number of separator values must equal the

number of fields minus one. For example, if

structure = scalar, scalar, 2-vector

then two separator values must be specified: one between the two scalar
fields and one between the second scalar field and the vector field.

� For record data, the number of separator values must equal the number of
dimensions minus one. For the preceding example, three separator values
must be specified: the first between the two scalar fields; the second
between the second scalar and the first vector component; and the third
between the two vector components.

 Importing Data

 series

series = t,

start, delta

, separator =
bytes n
lines n
marker “string”

Function: Specifies, to the Importer, information about a series.

Use: Optional. This keyword is required only for the importation of series data.
The default assumes no separation between series sections. Descriptive
information between series sections is described with the separator
parameter. If descriptive information precedes the first member of the
series, it can be skipped by means of a header statement.

� t is a required parameter that specifies the number of series elements in
the data file. Its default value is 1.

� start and delta are optional parameters that specify the series
positions. The position values are defined as:

start, start + delta, start + (2 × delta), ..., start + (t − 1) × delta

The defaults for start and delta are 0 (zero) and 1 (one) respectively.
� The following example specifies that there are four series members, with

positions 0.8, 1.2, 1.6, and 2.0.

series = 4, ð.8, ð.4

� The specification of separator is very much like that of the header
keyword (see “header” on page 89).

 Chapter 5. Importing Data 93

 structure

structure = structure1, structure2, ..., structuref

Function: Specifies the structure of each field in a data file.
Use: Optional. The default is scalar. Accepted values are scalar, string[n],

and 2-vector,..., 9-vector for each field. However, 5-vector, ...,
9-vector cannot be specified for column-majority arrays. In string[n], n
specifies the length of the longest string.

Notes:

1. Use of this keyword requires specifying the structure of all fields in the file.
2. The following example specifies that the first two fields have a scalar structure,

while the third is a vector with three components:

structure = scalar, scalar, 3-vector

3. Since the default is scalar, the statement is not required if, say, six scalar fields
are to be imported. But if one of these fields is vector, the statement is
required; for example:

structure = scalar, scalar, 3-vector, scalar, scalar, scalar

4. If string data contain embedded blanks, you must use the layout or block
keyword to specify how the string is to be read.

 type

type = type1, type2, ..., typef

Function: Specifies the data type for each specified field.
Use: Optional. The default is float. The accepted values are:

double byte int short
float signed byte signed int signed short

 string unsigned byte unsigned int unsigned short

Notes:

1. Use of this keyword requires specifying the type for all fields in the file.
2. The following are pairs of equivalent types:

� byte and unsigned byte.
� short and signed short.
� int and signed int.

 positions

positions =

origin1, delta1, ..., origind, deltad
positiontype1, positiontype2, ..., positiontyped, position1, position2, ..., positionk
position1, position2, ..., positiong

Each syntax line in this diagram is discussed separately in Note 4 below.

Function: Defines the positions component of the fields in a data file.
Use: Optional. The default is regular positions in compact notation, where the

origin and delta in each dimension are 0.0 and 1.0 respectively, unless the
locations keyword has been used.

94 IBM Visualization Data Explorer: QuickStart Guide

Notes:

1. This keyword must be placed at the end of the header file or immediately
preceding the end keyword.

2. The numbers specified in a positions statement can span any number of
uninterrupted lines (including carriage returns, which is not true of other
keyword statements).

3. Positions can also be specified with the field statement and the locations
reserved word (see “field” on page 88). This alternative is important in cases
where:
� The positions are irregular and can be interleaved with data themselves.
� The positions vary with a series member.
� The positions are not stored in row-majority order in ASCII.

4. There are four ways to specify positions with the positions keyword:

 � Regular positions:

positions = origin1, delta1, ..., origind, deltad

Specifies a regular grid, using the origin of a dimension and the spacing (delta)
of the positions in that dimension. The dimensions must be specified in the
same order as that in the grid keyword statement (see “grid” on page 87).

The statement

positions = ð.ð, 1.ð, ð.ð, ð.5, ð.ð, 1.5

specifies the origin-delta pairs of a 6 × 6 × 3 grid, with origins of 0.0 in all three
dimensions and deltas of 1.0, 0.5, and 1.5.

� Partially regular positions:

positions = positiontype1, positiontype2, ..., positiontyped, position1, position2, ..., positionk

Specifies an array (regular or irregular) for each dimension from which a
product is to be formed. For example, one array with the values 1, 2, 3, and a
second with the values 1, 4, 8 will generate the following set of positions:

(1, 1) (1, 4) (1, 8)
(2, 1) (2, 4) (2, 8)
(3, 1) (3, 4) (3, 8)

For each dimension, specify a string indicating the type of positions for the
dimension—accepted values are regular and irregular. Specify the strings
for all dimensions first, then follow with the position values.

For compact specification, the position values are two numbers: an origin and
the delta value for the spacing. Specifying irregular positions requires an
explicit listing of each position value, with the same number of positions as
specified by the grid keyword statement. The order in which positions are
specified must correspond to the order in which dimensions are specified in
that statement.

The following example specifies the positions for a 6 × 6 × 3 grid, where the
first two dimensions are regular, and the third is irregular:

position = regular, regular, irregular, ð.ð, 1.ð, ð.ð, ð.5, ð.ð, ð.5, 1.5

Here the first dimension is regular, with positions 0, 1, 2, 3, 4, 5.
The second dimension is regular, with positions 0.0, 0.5, 1.0, 1.5, 2.0, 2.5.
The third dimension is irregular, with positions 0, 0.5, 1.5.

The first few positions are (0, 0, 0) (0, .5, .5) (0, .5, 1.5) (1, 0, 0)....

 Importing Data

 Chapter 5. Importing Data 95

� Completely irregular positions:

positions = position1, position2, ..., positiong

Specifies fully irregular positions: you must list all the position values.

Note: The requirement that all positions must be listed is what distinguishes a
“completely irregular” from a “partially regular” grid (discussed above). For
example, the keyword statement

positions = irregular, irregular, irregular,...

still defines a partially regular grid, even though each array specified is
irregular.

The number of values you provide corresponds to the product of all the
dimension specifications (i.e., the num values) in the grid keyword statement.
The position values must be listed in row majority order, and they can be
delimited by commas.

You must specify g numbers, where g is the product of the num values of the
dimensions all multiplied together, along with the number of dimensions (e.g.,
m×n×o×d, where m, n, and o are the grid dimensions, or num values, and d is
the number of dimensions).

The following example specifies the six positions for an irregular 2 × 3 grid:

positions = ð, ð, ð, 2, ð, 6, 2, 1, 5, 4, 7, 7

The first and last positions are (0, 0) and (7, 7) respectively.

� Position information from the data file

You can specify that the information for the positions keyword is to be found
in the data file. For the syntax, see B.1, “General Array Importer: Keyword
Information from Data Files” on page 242 in IBM Visualization Data Explorer
User’s Guide.

Note: The positions keyword may give a compact encoding of the position.
In that respect, this function differs from the locations reserved word when
used with the field keyword (see “field” on page 88).

 end

end

Function: Causes the Importer to stop processing header statements.
Use: Optional unless the data are in the same file with the header statements. By

default, the Importer stops processing at the end of the header file.

 5.4 Data Prompter
The Data Explorer Data Prompter is a stand-alone, Motif-based user interface for
importing data. It consists of three dialog boxes:

� Initial Dialog Box (see Figure 15 on page 99)
� Simplified Data Prompter (see Figure 16 on page 102)
� Full Data Prompter (see Figure 17 on page 105).

The Data Prompter imports a variety of different formats. It also gives you access
to some general purpose visualization programs which can visualize a wide variety

96 IBM Visualization Data Explorer: QuickStart Guide

of different types of data (e.g. two-dimensional, three-dimensional, scalar, vector,
series, etc.)

For Future Reference
The general purpose programs used by the Data Prompter may be found in
/usr/lpp/dx/ui, with names denoting the type of data they visualize. You may find
these programs useful on their own (apart from their use in the Data Prompter).

 Supported Formats
Data Explorer Format

The Data Explorer format can be used to describe any object
which can be represented in Data Explorer. Objects can be
exported in the Data Explorer format using the Export
module, and often filters are written to convert from other
formats to the Data Explorer format. The Data Explorer
format is described in detail in B.2, “Data Explorer Native
Files” on page 244 in IBM Visualization Data Explorer User’s
Guide.

The Data Explorer format is supported directly by the Import
module (see “Import” on page 165 IBM Visualization Data
Explorer User’s Reference). To create visual programs using
data in this format, simply use the Import module, specifying
the file name, and the format as “dx”.

CDF Format CDF is a standard format, supported directly by the Import
module. For more information on the CDF format, see B.3,
“CDF Files” on page 279 in IBM Visualization Data Explorer
User’s Guide. To create visual programs using data in this
format simply use the Import module, specifying the cdf as
the name parameter to Import, and specifying the format as
“cdf”.

netCDF Format netCDF is a standard format, supported directly by the Import
module. For more information on the netCDF format, see
B.4, “netCDF Files” on page 281 in IBM Visualization Data
Explorer User’s Guide To create visual programs using data
in this format simply use the Import module, specifying the
file name as the name parameter to Import, and specifying the
format as “netCDF”.

HDF Format HDF is a standard format, supported directly by the Import
module. Data Explorer supports HDF files that contain a
Scientific Dataset (SDS). For more information on the HDF
format, see B.6, “HDF Files” on page 288 in IBM
Visualization Data Explorer User’s Guide. To create visual
programs using data in this format simply use the Import
module, specifying the file name as the name parameter to
Import, and specifying the format as “hdf”.

Image data Images in TIFF, MIFF, GIF, and RGB formats can be directly
imported by the ReadImage module (see “ReadImage” on
page 250 in IBM Visualization Data Explorer User’s
Reference). To see the image, you need only to attach the
output of ReadImage to first input of the Display module. You

 Importing Data

 Chapter 5. Importing Data 97

can of course manipulate the image with any of the
appropriate Data Explorer modules.

Grid or Scattered Data (General Array format)
Data Explorer can import a wide variety of gridded and
scattered data using the General Array format. The basic
procedure is to create a header file which describes the
structure of the data (dimensionality, number of variables,
layout in the file, etc.). The General Array Importer is
described in detail in 5.1, “General Array Importer” on
page 63. 5.2, “Importing Data: Header File Examples” on
page 67 contains many examples illustrating the wide variety
of data that can be imported.

The Data Prompter greatly simplifies the task of creating a
header file, as it performs extensive error checking
(disallowing conflicting keywords, for example) and frees you
from needing to know the exact syntax of the General Array
format. When you use the Data Prompter to import this
format, you will be asked to describe your data in detail. You
need to then save the header file using Save As in the File
menu of the Data Prompter Full or Simplified window. The
data can then be visualized using one of the general purpose
programs provided by the Data Prompter.

To create new visual programs using data imported in this
way, simply specify the name of the header file to the Import
module, specifying the format as “general” (see “Import” on
page 165 in IBM Visualization Data Explorer User’s
Reference).

Spreadsheet Data Spreadsheet data is typically non-spatial data, arranged in
columns. This type of data is supported by the
ImportSpreadsheet module (see “ImportSpreadsheet” on
page 170 in IBM Visualization Data Explorer User’s
Reference).

Note: For the formats directly supported by Import (Data Explorer, CDF, netCDF,
HDF) or ImportSpreadsheet (spreadsheet data), it is not necessary to use the Data
Prompter to import the data. You can simply use the Import or ImportSpreadsheet
module and then add whatever visualization modules you want to look at the data.
However, you can use the Data Prompter to give you easy access to the general
purpose programs which get you “up and running” with a picture of your data.

If you are importing your data using the General Array format, once you have
created a header file (typically done by using the Data Prompter), you can import
the header file directly using the Import module.

Initial Dialog Box
To start the Data Prompter, type:

dx -prompter

or choose Import Data from the Data Explorer Startup window. The initial dialog
box appears (see Figure 15 on page 99).

98 IBM Visualization Data Explorer: QuickStart Guide

Figure 15. Initial Data Prompter window

 Importing Data

At the top of the Data Prompter initial dialog is a text field into which you can enter
the data file to be imported. If you press the ... button to the right of the field, a
list of directories is presented. This list of directories is taken from your DXDATA

environment variable, if set (see C.1, “Environment Variables” on page 292 in IBM
Visualization Data Explorer User’s Guide). Then a file selection dialog is
presented, initialized to the directory chosen from the ... button. You can also
access the file selection dialog directly by choosing Select Data File from the
File menu.

The dialog also allows you to specify the type of data file you wish to import. The
choices are:

� Data Explorer file
 � CDF format
� netCDF format file

 � HDF format
 � Image file
� Grid or Scattered file

 � Spreadsheet format

For the Data Explorer, CDF, netCDF, and HDF formats, all you need to do is make
the selection of the format and specify the file name at the top of the dialog. Each
of these formats is supported directly by Data Explorer and no further description

 Chapter 5. Importing Data 99

by you is necessary. Then you can choose to browse the data file, have Data
Explorer test the import of the data file and print some characteristics of it, or have
Data Explorer visualize the data automatically using a general purpose visual
program.

If you choose Image file, the dialog will expand, allowing you to choose the type
of image format, and you can then have Data Explorer automatically read and
display your image file.

If you choose Spreadsheet format, the dialog will expand, allowing you to specify
whether to import the data as a table or a matrix. Spreadsheet data consists of
columns of related data, typically non-spatial. If imported as a table, then the data
will be treated as a single Field of data, with each column placed in the field as a
named component. Each component will contain scalar or string data. If imported
as a matrix, then it is implicitly assumed to be a two-dimensional grid, with the rows
and columns specifying the two dimensions. In this case the data in each column
must be of the same type (i.e. you cannot have mixed strings and numbers). The
Spreadsheet format option also allows you to specify a column delimiter. For
example, to specify tab-separated columns, specify “\t” as the delimiter. See
“ImportSpreadsheet” on page 170 in IBM Visualization Data Explorer User’s
Reference for more information.

If you choose Grid or Scattered File (General Array Format), which allows you
to import a wide variety of data formats, you will need to tell Data Explorer more
about the file. If you choose this option, the dialog box that appears allows you to
identify for the Data Prompter five important characteristics of the data you want to
import:

 � Grid type
� Number of variables
� Positions in data file
� Single time step

 � Data organization.

Grid type
Four grid-selection buttons display patterns representing different types of
data. Reading from left to right, they are:

� Regular grid: the data-point positions can be specified by
origin-and-delta pairs (one pair for each dimension).

� Partly regular grid: one or more of the dimensions cannot be described
by a simple origin-delta pair.

� Warped regular grid: each position must be explicitly specified, but there
is still a grid structure to the connections between data points.

� Scattered data: there are no connections between data points.

Number of variables
The stepper button allows you to specify the number of variables in the data
file to be imported. For example, if the file contains data values for
temperature and velocity (and for nothing else), the stepper button should be
set to 2. (The default is 1, and the allowed range is 1–100.)

Positions in data file
This option is available only with the selection of warped regular grid or
scattered points. It is not meant for files that “describe” data positions by
reference to origin-delta pairs. For example, if the data are organized as:

100 IBM Visualization Data Explorer: QuickStart Guide

x1, y1, data1

x2, y2, data2

. . .

the toggle should be activated.

Selecting the regular or partly regular grid automatically deactivates the
toggle: the label is grayed out, and the button cannot be activated.

Selecting the third button (warped grid) automatically activates the toggle,
and a stepper button appears for setting the number of dimensions (e.g., set
the stepper to 3 for x,y,z points). Once the warped grid is selected,
however, the toggle cannot be reset (i.e., the position specifications are
assumed to be in the file).

Selecting the fourth button (scattered points) does not activate the toggle,
but it allows you to do so, and to deactivate it even after setting the number
of dimensions.

Single time step
This toggle button allows you to specify whether your data consists of a
single time step or not. By default, the toggle is activated.

Data organization
The data organization can be characterized as block or spreadsheet. For
example, given a regular grid containing two variables (say temperature and
pressure), block style lists one set of values first, followed by the other:

t1, t2, ..., tn, p1, p2, ..., pn

Spreadsheet style alternates the two (one pair per line):

 t1, p1
 t2, p2
 ...

 tn, pn

Once you have specified the five characteristics in the initial dialog box, click on
Data Prompter. The simplified Data Prompter that appears is “customized,”
containing only those options appropriate to the data you have described in the
dialog box (see “Simplified Data Prompter”).

For Future Reference: Once you have opened and modified either the simplified or
full data prompter, if you then close the simplified or full window, you should not
use the Describe Data button to reopen the window, as the Describe Data button
opens a brand new window. Instead, use Open General Array Importer from the
Options menu of the initial dialog.

 Importing Data

Simplified Data Prompter
The simplified Data Prompter (Figure 16 on page 102) is just what its name
implies: a smaller version of the full Data Prompter (Figure 17 on page 105). It
displays a subset of the buttons, parameters, and fields contained in the larger
version. Since these are identical in both versions, they are described in the
section on the full Data Prompter (see “Full Data Prompter” on page 103).

This section instead describes only the menu bar and its options, which are also
identical in both the simplified and full prompters.

 Chapter 5. Importing Data 101

Figure 16. Simplified Data Prompter. This window contains a subset of the buttons, parameter, and fields available
in the full Data Prompter (see Figure 17 on page 105). The Options pull-down menu can be used to call up the full
prompter or to return to the initial dialog box.

The Data Prompter menu bar displays four options: File, Edit, Options, and
Help.

Data Prompter File Pull-down Menu
The following functions are available in this pull-down menu:

New Resets the Data Prompter by setting all fields to their default values.

Open...
Invokes a standard Motif file-selection dialog box that prompts for a choice of
file. You can read in an existing General Array Importer header file, whether
or not it was created with the Data Prompter. However, the Data Prompter
does not support header files containing the data to be imported: the data is
assumed to exist in a separate file. To read an existing header from a file
that also contains the data to be visualized, the header should be written out
to a separate file.

Save Writes the Data Prompter header file out, using the current file name. The
current file name is set by opening a file or by executing the Save As...
command. The Data Prompter will check the correctness of most aspects of
the header file to be saved. Any problems are reported and the Save
operation is terminated. You may then correct the indicated problem and
save the header file again.

Save As...
Is the same as Save except that you must specify a name for the header file.

Quit Terminates the Data Prompter application. It also gives you the option of
saving any changes not already saved.

102 IBM Visualization Data Explorer: QuickStart Guide

Data Prompter Edit Pull-down Menu
Edit has one option: the Comment dialog box.

Comment...
Displays a text dialog box for entering comments about a header file. These
comments are stored with the file and are ignored by the General Array
Importer. Any comments it contains are displayed in the Header Comment
dialog box.

Data Prompter Options Pull-down Menu
The following options are available in this pull-down menu:

Full prompter
Invokes the most detailed prompter dialog box (Figure 17 on page 105). It
can also be invoked from the command line: dx -prompter -full.

Simplified prompter
Invokes a prompter dialog box (Figure 16 on page 102) that is less detailed
than the full Data Prompter.

Initial dialog
Invokes the initial dialog box (Figure 15 on page 99). It can also be invoked
from the command line: dx -prompter.

 Importing Data Data Prompter Help Pull-down Menu
This pull-down menu contains one option not available in the corresponding
pull-down menus of the VPE window, the Image window, and the Data Browser:

On General Array Format...
Displays the online documentation of the General Array Importer format.

For details of the other menu options, see IBM Visualization Data Explorer User’s
Guide.

Full Data Prompter
The full Data Prompter dialog box is divided into halves, the left half describing
features of both the data file and the data, and the right half describing the data
field(s) (see Figure 17 on page 105). The order of descriptions in this section
follows that of the dialog box: from top to bottom in the left half and then top to
bottom in the right half.

Note: If you used the initial dialog box to describe your data and then selected OK
instead of Full, you are in the simplified Data Prompter and some options may not
be presented. However, you can invoke the full prompter at any time by selecting it
in the Options pull-down menu.

Data File and Data Information
Data file

The first information the General Array Importer requires is the path name of
the data file to be imported. This name can be entered directly in the text
field to the right of the Data file label. Alternatively, you can click on the
ellipsis button (...) to the right of the text field. If you select File Selection
Dialog... from the pop-up menu, you can select a file from the dialog list.
Note that using the File Selection dialog list is simply a shortcut for typing
in the path name. The Browser option on the ellipsis pop-up is discussed in
5.5, “Data Prompter Browser” on page 109.

 Chapter 5. Importing Data 103

See also “file” on page 86.

Header
If your data file has a header (an initial section that must not be imported
with the data), activate the Header toggle button. Clicking on the button
immediately to the right of the toggle will generate a pop-up menu of three
options for specifying where the header stops and the data begins:

� # of bytes (from the beginning of the file)
� # of lines (from the top of the file)

 � string marker

Click on one and enter the appropriate information in the associated text field
to the right. The appropriate offset or string can be determined by browsing
the data file. (See Notes in “header” on page 89. As earlier examples
demonstrate, this information ultimately appears in a header keyword
statement in a header file.)

See also “header” on page 89.

Grid Size versus # of Points
Located below the Header toggle button are two buttons labeled Grid Size
and # of Points.

If the data has connections that are gridded, click on the Grid size button.
Specify the dimensions of the grid in the associated text fields (e.g., if the
data are 2-dimensional, enter the sizes in the first two fields and leave the
last two blank).

If the data consist of unconnected points, click on the # of Points
associated button, and enter the appropriate number in the associated text
field.

Notice that these choices affect other aspects of the Data Prompter. The
choice of points deactivates the Data order buttons and all but the first
origin-delta field in the Positions section at the bottom.

See also “grid” on page 87 and “points” on page 87.

Data Format
The format of the data can be ASCII/Text or Binary/IEEE. The selection of
Binary/IEEE) activates the Significant Byte First option button
immediately to the right. You may then select Most Significant Byte First
(MSB) or Least Significant Byte First (LSB). For ASCII (or Text) format, this
option button is inactivated.

See also “format” on page 89.

Data Order
This option specifies the layout of multidimensional arrays. Row (majority)
means that the last index of a multidimensional array varies fastest (as in C
language). Column (majority) means that the first index varies fastest (as in
FORTRAN).

See also “majority” on page 92.

Field Interleaving
The data to be visualized must be organized in one of two general styles:
block or columnar. For data laid out in blocks, select Block from the Field
Interleaving option menu. For columnar style, select Columnar.

104 IBM Visualization Data Explorer: QuickStart Guide

Figure 17. Full Data Prompter. The two halves of this dialog box are described in separate sections in the text (see
“Data File and Data Information” on page 103 and “Data Fields Information” on page 107).

 Importing Data

Note that when Columnar is selected, both Vector Interleaving and Series
Interleaving are grayed out. (See “Some Notes on General Array Importer
Format” on page 66 for more information about the block and columnar
styles.)

See also “interleaving” on page 90.

Vector Interleaving
The interpretation of vector data organized in records (blocks) is specified by
the Vector Interleaving option button. The two choices in the associated
option menu are:

X0Y0, X1Y1,..., XnYn “Vectors together”

and

X0, X1,..., Xn, Y0, Y1,..., Yn “Components together”

 Chapter 5. Importing Data 105

“Vectors together” means that all of the components of one vector are written
together, then all the components of the next vector, and so on.
“Components together” means that all of the x-components are written
together, then all the y-components, and so on.

See also “interleaving” on page 90.

Series
For data consisting of a sequence of fields, click on the Series toggle
button, activating the three text fields to the right:

� n specifies the number of series members in the data file.
� start specifies the series value for the first series member.
� delta specifies the difference in position between successive series

members.

See also “series” on page 93.

Series Interleaving
Activating the Series toggle button also activates the Series Interleaving
option menu if Field Interleaving is set to Record. The option menu
contains two choices:
F1s0, F2s0, F1s1, F2s1,..., F1sn, F2sn “Series members together”
and
F1s0, F1s1, F2s0, F2s1,..., Fns0, Fns1 “Fields together”

This feature is useful for series that consist of more than one field. “Series
members together” means that the data for each field of series member zero
(s0) are followed by all the data for each field for series member one (s1),
and so on. “Fields together” means that all the series members for field 1
(F1) are followed by all the series members for field 2 (F2), and so on.

See also “interleaving” on page 90.

Series Separator
This feature is required only if the data for series members are separated
from one another by non-data (e.g., comments). The specification is
identical to that of the Header keyword (see Header on page 104).

See also “series” on page 93.

Grid Positions
This feature is required for gridded data if you have not specified that the
positions are stored in the file (by naming one of the fields with the reserved
word “locations”).

The entire section is grayed out if the “locations” reserved word is used. If
the data consist of unconnected points (and are so specified in the initial
dialog box or by the # of points toggle), all but one of the origin-delta fields
is grayed out. See also “positions” on page 94.

The option button just to the right of the Grid positions (or Point
positions) title offers the following choices:

Completely regular
The dimensions of the grid are all regular. This selection fixes
the regular/irregular option button to the left of each dimension
field at “regular” (i.e., “irregular” cannot be selected for any
dimension). There will be as many origin/delta fields enabled as
there are dimensions as specified by Grid size, or one if # of
Points is chosen.

106 IBM Visualization Data Explorer: QuickStart Guide

Partially regular
Each dimension of the grid can be either regular or irregular.
This selection specifies a product of arrays. Thus, for example,
the grid may be spaced equally in one dimension, but have an
explicit list of positions in another dimension. For each dimension,
you can set the regular/irregular option menu to the
appropriate choice, and then enter either the origin, delta pair for
that dimension or the explicit list of positions for that dimension.

Notes:
1. A regular dimension is specified completely by an origin and

a delta (the number of positions in the dimension is specified
in the grid section).

2. Specification of an irregular dimension requires an explicit
and complete list of values (the number of items in the list
must exactly equal the number of positions in the dimension).

Explicit position list
The positions are completely irregular and must be explicitly
specified. If this option is chosen, then a single field is enabled for
you to enter the position list. The number of items in the list
should be equal to the total number of positions x the
dimensionality of the positions.

 Importing Data

Data Fields Information
Note: A change made in any option in this part of the dialog box generates an
instruction to save (confirm) the change by clicking on the Modify button at the
bottom of the panel.

Field List
This list (at the top right of the Data Prompter) displays the names of the
fields that are currently defined for a header file.

If the list contains more than one field, their order must match that of the
fields in the data file. To change the order of the fields, use the Move field
arrows, after first selecting (highlighting) the field name to be moved.

Note that the settings of the various buttons and associated text fields below
the field list are updated whenever a field is selected.

See also “field” on page 88.

Field name
The text field immediately below Field List displays the name of the current
(selected) field. Field names must be unique. Default field names take the
form “fieldn”, where n is an integer.

You can change a name and then click on the Modify button (near the
bottom of the Data Prompter) to confirm the change. (Similarly you can add,
insert, or delete a field. See Field List Buttons at the end of this section.)

Type
For each field in the list, select the appropriate data Type with the associated
option button. The type must match that of the data in the field. The
supported types are:

double byte int short

 float signed byte signed int signed short

string unsigned byte unsigned int unsigned short

 Chapter 5. Importing Data 107

Note that:

– byte is equivalent to unsigned byte
– int is equivalent to signed int
– short is equivalent to signed short.

Specifying string enables “string size,” which should contain the length of
the longest string.

See also “type” on page 94.

Structure
For each field in the list, select the appropriate Structure with the
associated option button. Accepted values are scalar and 2-vector, ...,
9-vector. However, 5-vector, ..., 9-vector cannot be specified for
column-majority arrays.

See also “structure” on page 94.

Dependency
For each field in the list, select the appropriate Dependency with the
associated option button. The default setting of this option is “positions” (one
data item per position). If the data in the field are cell-centered (connection
dependent) select “connections”.

See also “dependency” on page 88.

Layout
This option is automatically activated when the data in the current field are
field-interleaved (columnar) ASCII (Text). It specifies the locations of data
items in a line of text.

skip specifies the number of characters the Importer must skip before it
begins reading data in this field.

width specifies the “width” (including blanks) of the field from which the
data is to be read.

See also “layout” on page 92.

Block
This option is automatically enabled when the data in the current field are
record-interleaved (block) ASCII (Text). It specifies the locations of data
items in a line or field of text.

skip specifies the number of characters the Importer must skip before it
begins reading data in this field.

elem specifies the number of data elements to be read after a skip.

width specifies the “width” (including blanks) of the data component.

See also “block” on page 88.

Field List Buttons
Four buttons at the bottom of the Data Prompter operate on the fields list:

Add Adds the field specified in Field name to the field list, placing it
immediately after the current (highlighted) field. The settings for the
new field are those current at the time of the addition.

Insert Inserts the field specified in Field name in the field list, placing it
immediately before the current (highlighted) field. The settings for the
new field are those current at the time of the insertion.

108 IBM Visualization Data Explorer: QuickStart Guide

Modify Saves any change(s) to the settings of the current (selected) field.

Delete Removes the selected (highlighted) field from the field list.

Note: Modify and Delete are grayed out if there is no selected item in the
field list.

Record Separator
This option is enabled only when Block field interleaving is selected. It allows
you to specify a separator between blocks, or records, in the data file, when
there are more than one. You can specify the same separator for between
each record, or a different separator between each record. Depending on the
setting of Vector interleaving button, separators may be specified between
each field, or between each component of each vector in each field.

5.5 Data Prompter Browser
The Browser is a file-viewing tool to help you determine details of the layout and
organization of a data file. Specifically, the Browser can measure offsets from a
particular point (the top of a file, the beginning of a line, or a marker) and display
the results in bytes and lines. These results can be copied and pasted (with
standard Motif Copy/Paste operations) into the appropriate sections of the Data
Prompter.

 Importing Data

Starting the Browser
To browse a particular file:

1. Enter the path name of the file in the Data file field of either the simplified or
the full Data Prompter.

You can enter a name directly in the field or click on the ellipsis button (...) to
the right and select a name from the File Selection Dialog... box.

2. Click on the ellipsis button again and select Browser.... The File Browser
window appears, displaying the selected file (Figure 18 on page 110).

The File Browser window consists of three areas:

� The menu bar provides access to most of the Browser commands.
� The text window displays the contents of the selected data file.
� The offset area displays (in number of lines and bytes) the “distance” (or offset)

between the cursor and a specified starting point.

Browser Menu Bar

Browser File Menu
The single command in this menu is Close, which removes the Browser from the
screen.

Browser Mark Menu
The commands in this menu control the placement of a “mark” in the selected file.
The numbers displayed in the offset area are useful in specifying offset values for
header (see Header on page 104), layout (see Layout on page 108), and block
(see Block on page 108) in the Data Prompter.

 Chapter 5. Importing Data 109

Figure 18. File Browser Window. This window has just been opened and the cursor has not been moved from its
initial position at the beginning of the file. No numbers will appear in the offset fields until the cursor is moved. The
file displayed in the window is /usr/lpp/dx/samples/data/record_multiscalar (see Example 1 of “Record Style:
Multivariable Data” on page 75).

Place mark
Replaces the character to the right of the cursor with a solid
diamond-shaped mark. It will remain in place until moved to another position
(with a new Place Mark command) or removed altogether. Note that the
Browser allows only one mark at any time.

Clear mark
Removes a mark from the file.

Goto mark
Causes the Browser to display the text associated with a mark (if it is not
already displayed in the file window).

Browser Page Menu
The two commands in this menu position the Browser at the beginning of the
selected file (First page) or at the end of the file (Last page).

Browser Search Menu
The single command in this menu is Search..., which displays a search dialog box.
Any string or regular expression can be entered in the Search for field. The
search begins at the current position of the cursor and proceeds forward (the Find
Next button) or back (the Find Previous button). Searches “wrap around” in either
direction. The Close button closes the dialog box.

110 IBM Visualization Data Explorer: QuickStart Guide

Browser Text Window
The File Browser window displays the contents of the file being browsed. The
cursor can be positioned anywhere in the text (with the left mouse button). When
the cursor is repositioned, the values in the offset area below the file window are
updated.

Browsing Large Data Files

If the file in the text window exceeds a certain size, the Browser displays it in
“chunks,” the scroll bar controlling only the current chunk. When the slider is
moved to the bottom of the scroll bar, the Browser reads in the next chunk; to
top of the scroll bar, the preceding chunk.

Browser Offset Area
Five text fields at the bottom of the Browser display the “offsets” (in bytes and lines)
from the top of the file or from a “mark” to the current position of the cursor. When
the cursor is repositioned, the offset values are updated.

The text fields can be used to reposition the cursor anywhere in the file: enter a
new value in a text field and press the Enter key. The cursor moves to the position
specified by the new offset.

Copying Offset Values to the Data Prompter

1. Highlight an offset value by triple clicking on the value field or dragging the
cursor over the value.

2. Position the cursor in the target field in the Data Prompter and click once
with the middle mouse button. The offset value appears in the target field.

 Importing Data

5.6 Using the Header File to Import Data
Once you have created a Data Prompter header file, the next step is to use that file
to import the data it describes. The basic procedure follows:

1. Place an Import tool icon on the VPE canvas (see “Selecting tools and placing
icons” on page 22).

2. Double click on the icon to invoke the configuration dialog box (see Figure 19
on page 112).

3. The following information is required:
a. The (path) name of the header file to be imported (in the first text field of the

Value column (at right). If the Import module is part of a network displayed
in the VPE, the path name appears automatically.

b. Set format (the third field of the column)
c. Set format (the third field of the column) to “general” unless the header file

already has that as its extension.

 Chapter 5. Importing Data 111

Figure 19. Import Configuration Dialog Box.

Notes:

a. Header files created with the Data Prompter are given this extension
automatically when they are saved with Save As... (Step 10 of Example 1
in To save the header file on page 68).

b. The variable parameter can be used to import a subset of the variables
specified by the field keyword statement. For the General Array format,
by default, all variables are imported.

The specified data file will now be imported when any visualization program
containing this Import module is run.

112 IBM Visualization Data Explorer: QuickStart Guide

 Glossary

Some of the definitions in this glossary are taken from
the IBM Dictionary of Computing, ZC20-1699.

A
accelerator . A keystroke sequence that reduces the
number of steps needed to complete a task.

anchor window . The window in which a Data Explorer
session starts (either the Visual Program Editor or the
Image window). The window is identified by an anchor
symbol in the top left corner. When this window is
closed, the Data Explorer session ends.

array . In Data Explorer, an array structure containing
an ordered list of data items of the same type along
with additional descriptive information.

B
Browser . A Data Explorer user interface for
determining the layout and organization of data in a file.

C
camera . An object that describes the viewing
parameters of an image (e.g., width of the viewport,
viewer’s location relative to the object, and the
resolution and aspect ratio of the image). A camera
may be explicitly defined and passed as a parameter to
the Render or Display module. It may also be implicitly
defined in the use of interactive, mouse-driven options
(such as zoom or rotate) in the Image window.

canvas . The area of a VPE window used in building
and editing visual programs.

cell-centered data . See connection-dependent data.

clipping plane . A plane that divides a 3-dimensional
object into a rendered and an unrendered region,
making the object’s interior visible.

colormap . In Data Explorer, a color map that relates
colors to data values. The colors are carried in the
map’s “data” component and the data values to which
each color applies in its “positions” component.

Colormap Editor . A Data Explorer user interface for
mapping precise colors to specified data values, the
results of which are displayed in a visual image.

component . A basic part of a field (such as
“positions,” “data,” or “colors”); each component is
indexed by a string (e.g., “positions”), and its value is
typically an array object (e.g., the list of position values).

connection . Component of an IBM Data Explorer data
field that specifies how a set of points are joined
together. Also controls interpolation.

connection-dependent data . Cell-centered data. The
data value is interpreted as constant throughout the
connection element.

contour . On a surface, a line that connects points
having the same data value (e.g., pressure, depth,
temperature).

control panel . A Data Explorer interactive window that
facilitates setting and changing the parameters of visual
programs.

cube . A volumetric connection element that connects
eight positions in a data field.

cutting plane . An arbitrary plane, in 3-dimensional
space, onto which data are mapped.

D
data-driven interactor . Interactors whose attributes
(such as minimum and maximum) are set by an input
data field.

Data Prompter . A graphical user interface that
enables a user to describe the format of the data in a
file. The prompter creates a General Array Format
header file that is used by the Import module to import
the data.

dialog box . The “window” displayed when the user
selects a pull-down option that offers or requires more
detailed specification.

display . (1) v. To present information for viewing,
usually on a terminal screen or a hard-copy device.
(2) n. A device or medium on which information is
presented, such as a terminal screen. (3) Deprecated
term for panel.

Display module . A non-interactive module for
displaying an Image. See Image window.

 Glossary

 Copyright IBM Corp. 1991-1997 113

E
element . See connection.

executive . The component of the Data Explorer
system that manages the execution of specified
modules. The term often refers to the entire server
portion of the Data Explorer client-server model,
including the executive, modules, and
data-management components.

F
field . A self-contained collection of data items. A Data
Explorer field typically consists of the data itself (the
“data” component), a set of sample points (the
“positions” component), a set of interpolation elements
(the “connections” component), and other information as
needed.

G
general array format . A data-importing method that
uses a header file to describe the data format of a data
file. This “format” makes it possible to import data in a
variety of formats.

glyph . A graphical figure used to represent a particular
variable. Each occurrence of a glyph represents a
single value of the associated variable. Some attribute
of the glyph (e.g., length or angle) is a function of the
variable and varies with it.

group . A collection of objects.

I
icon . A displayed symbol that a user can point to with
a device such as a mouse to select a particular
operation or software application.

Image window . IBM Data Explorer window that
displays the image generated by a visual program.
Associated with the Image window are special
interactors for 3-D viewing.

interactor . A Data Explorer device used to manipulate
data in order to change the visual image produced by a
program. See also data-driven interactor, interactor
stand-in.

interactor stand-in . An icon used in the VPE window
to represent an interactor. Stand-ins are named after
the type of data they generate:

 � integer
 � scalar
� selector (outputs a value and a string)

 � string
 � value
 � vector.

interpolation element . An item in the connections
component array. Each interpolation element provides
a means for interpolating data values at locations other
than the specified set of sample points. See positions
component.

invalid . A classification of an array item (typically
positions or connections). An invalid item is not
rendered or realized.

isosurface . A surface in 3-dimensional space that
connects all the points in a data set that have the same
value.

isovalue . The single value that characterizes each and
every point constituting an isosurface. By default, this
value is the average of all the data values in the set
being visualized.

item . A single piece of data in an array.

L
line . An element that connects two positions in a field.

M
macro . In IBM Data Explorer, a sequence of modules
that acts as a functional unit and is displayed as a
single icon. Macros can also be defined in the Data
Explorer scripting language.

menu bar . In windows, a horizontal bar that displays
the names of one or more menus (or tasks). When the
user selects a menu, a pull-down list of options for that
menu is displayed.

module . (1) In IBM Data Explorer, a primitive function,
such as Isosurface. (2) In a VPE window, the icon for
a module (also called a tool, q.v.). (3) A program unit
that is functionally discrete and identifiable (i.e., it can
be assembled, compiled, combined with other units, and
so on).

N
navigate . To move the camera (changing the “to” and
“from” points) around the image scene, using the
mouse.

netCDF . See Network Common Data Form.

network . In Data Explorer the set of tool modules,
interactor stand-ins, and connections that constitute a

114 IBM Visualization Data Explorer: QuickStart Guide

visual program. In the VPE window, a network appears
as a set of icons connected by arcs.

Network Common Data Form (netCDF) . A data
format that stores and retrieves scientific data in
self-describing, multidimensional blocks (netCDF is not
a database management system, however). netCDF is
accessible with C and FORTRAN.

O
object . In IBM Data Explorer, any discrete and
identifiable entity; specifically, a region of global
memory that contains its own type-identification and
other type-specific information.

opacity . The capacity of matter to prevent the
transmission of light. For a surface, an opacity of 1
means that it is completely opaque; an opacity of 0, that
it is completely transparent. For volume, opacity is
defined as the amount of attenuation (of light) per unit
distance.

P
palette . A displayed grouping of available selections
(such as functions, modules, or colors) in a GUI
window.

palindrome . In Data Explorer, a mode of running a
sequence of images in one direction and then in the
opposite direction.

pixel . Picture element. In computer graphics, the
smallest element of a display surface that can be
independently assigned color and intensity.

position-dependent data . Data that are in one-to-one
correspondence with positions.

positions component . A component that consists of a
set of dimensional points in a field.

probe . A list of one or more vectors that represent
points in a graphical image. Probes can be used with
Data Explorer tools that accept vectors as input (such
as ClipPlane and Streamline) or to control the view of
an image.

pull-down . In windows, the list of options displayed
when a task is selected from the menu bar.

Q
quad . An element that connects four positions in a
field.

R
realization . A description of how raw data is to be
represented in terms of boundaries, surfaces,
transparency, color, and other graphical, image, and
geometric characteristics.

rendering . The generation of an image from some
representation of an object, such as a surface, or from
volumetric information.

ribbon . A figure derived from lines (e.g., from
streamlines and streaklines). Ribbons may twist to
indicate vorticity.

S
sample point . A point that represents user data. Data
is interpolated between sample points by interpolation
elements (connections).

scalar . A non-vector value characterized by a single,
real number.

scatter data . A collection of sample points without
connections.

scripting language . The IBM Data Explorer command
language. Used for writing visual programs, to manage
the execution of modules, and to invoke visualization
functions.

scroll . To move all or part of the display image
vertically or horizontally to display data that cannot be
observed in a single display image.

Sequencer . An IBM Data Explorer tool for creating
“animated” sequences of images.

series . In IBM Data Explorer, used to represent a
single field sampled across some parameter (e.g., a
simulation of a CMOS device across a temperature
range).

stand-in . See interactor stand-in.

streaklines . Lines that represent the path of particles
in a changing vector field. Also called rakes.

streamlines . Lines that represent the path of particles
in a vector field at a particular time. Also called flow
lines.

 Glossary

 Glossary 115

T
tetrahedron . A volumetric connection element that
connects four positions in a field.

tool . In IBM Data Explorer, a general term for any icon
used to build a visual program (specifically, module,
macro, or interactor stand-in).

triangle . A connection element that connects three
positions in a field.

tube . A surface centered on a deriving line (e.g., a
streamline or streakline). Tubes may twist to indicate
vorticity.

V
vector . A quantity characterized by more than one
component.

vertex . One of the positions that define a connection
element.

visual program . A user-specified interconnected set of
Data Explorer modules that performs a sequence of
operations on data and typically produces an image as
output.

Visual Program Editor (VPE) . IBM Data Explorer
window used to create and edit visual programs and
macros. See also canvas.

volume . The amount of 3-dimensional space occupied
by an object or substance (measured in cubic units).
To be distinguished from an object’s surface, which is a
mathematical abstraction.

volume rendering . A technique for using color and
opacity to visualize all the data in a 3-dimensional data
set. The internal details visualized may be physical
(such as the structure of a machine part) or they may
represent characteristics (such as fluid flow,
temperature, or stress).

vorticity . Mathematically defined as the curl of a
velocity field. A particle in a velocity field with nonzero
vorticity will rotate.

VPE. See Visual Program Editor.

116 IBM Visualization Data Explorer: QuickStart Guide

 Index

Numerics
2-D scalar glyphs 31
2-D streamlines 30
2-D vector glyphs 32
3-D scalar glyphs 34
3-D streamlines 33
3-D vector glyphs 34

A
accessing tutorials 5
adding captions 36
adding control points 17, 18
adding input tabs 37
animations, creating 41
arcs, connecting tool icons with 23
AutoAxes 13
AutoColor module 44
axes box 13

B
begin, note on where to 6
block keyword 80
block keyword statement 88
boxes, configuration dialog 38
Browser 1, 109

and large data files 111
copying offsets to the Data Prompter 111
File menu 109
Mark menu 109
menu bar 109
offset area 111
Page menu 110
Search menu 110
starting 109
text window, File 111
window, File 109

browsing large data files 111

C
captions, adding 36
cell-centered data (example) 68, 76
Colormap Editor

adding control points 17
coloring data 29, 34, 44
opening 16
specifying values 17
window 18

colors 29

column data order 104
column majority (data) format (example) 85
columnar style data format 81
Compute module 44
configuration dialog boxes 38
configuring AutoAxes 13
connecting scattered data points 37
connecting tool icons with arcs 23
context-sensitive Help 5
contour lines 29
control panels 2, 15
control panels, creating 39
control points 16, 17, 18, 20
controlling

appearance of object 10
execution, with Switch 37
field of view 12
inputs 38, 39
rotation 11
size of object 10
view of object 10
viewing direction 10
visual image 10

creating animations 41
creating control panels 39
creating header files 66
creating macros 42

D
data (see also importing data)

block keyword, using 80
cell-centered 68, 76
coloring 29
coloring data 34, 44
column majority 85
deformed regular grid 78, 81
dependency 64
deriving grid information from 71
describing 63
examples, importing 67—85
field, naming a 70
fields 62
format, General Array 66
importing 25—29, 62—112
model 1
multiple scalar fields 75
multiple scalars 76
scalar and vector 77
scalar and vector (regular grid) 81
scalar, on a regular grid 67
scattered 79

 Index

 Copyright IBM Corp. 1991-1997 117

data (see also importing data) (continued)
scattered scalar 82
series 73
time series, with text 84
vector 71
visualizing 2-D 29
visualizing 3-D 32
warping 30
with header in same file 74
with header information 69
with text 82

data and header in same file (example) 74
Data Browser (see Browser)
data examples (see importing data (examples))
Data Explorer data model 1
Data Explorer Data Prompter (see Data Prompter)
Data Explorer scripting language 1
data fields 62
data format

record style 67, 75
data model, Data Explorer 1
data order 104
data points, connecting scattered 37
Data Prompter 1, 96

File menu 109
full 103
initial dialog box 98
Mark menu 109
menus 101
Page menu 110
Search menu 110
simplified 101

Data Prompter Browser (see Browser)
Data Prompter File Pull-down Menu 102
data visualization 1
data with text (example) 82
data-driven tools 43
deformed regular grid (example) 78, 81
deleting a tool icon 24
dependencies, mixed (example) 76
dependency keyword statement 88
dependency, data 64
deriving grid information (example) 71
describing data 63
dialog box

add control points 19
configuration 38
Import configuration 111
view control 11

Display module 2

E
editing a visual program 22
editor

Colormap 16

editor (continued)
Visual Program 2, 22

end keyword statement 96
examples, data (see importing data (examples))
executing a visual program 8

F
field interleaving 104
field keyword statement 88
field of view 12
field, naming (example) 70
fields, data 62
fields, multiple scalar (example) 75
File Browser text window 111
file keyword statement 86
File menu, Browser 109
format

column majority (example) 85
data (see data format)
General Array data 66
keyword statement 89

full Data Prompter 103

G
General Array data format 66
General Array Importer 63
glyphs

2-D scalar 31
2-D vector 32
3-D scalar 34
3-D vector 34

grid keyword statement 87
grid types 64
grid, deformed regular (example) 78

H
header and data in same file (example) 74
header file examples 67
header file syntax 85
header files, creating 66
header keyword statement 89
Help, context-sensitive 5

I
icon(s) (see tool icon(s))
Image window 2, 9, 10
images, printing 47
images, processing 46
images, saving 47
import configuration dialog box 111
Importer, General Array 63
importing data 25—29, 62—112

configuration dialog box 111

118 IBM Visualization Data Explorer: QuickStart Guide

importing data (continued)
examples (see importing data (examples))
header file used for 111
in General Array format 25

importing data (examples)
block keyword 80
cell-centered 68, 76
column majority 85
columnar style 81
deformed regular grid 78, 81
multiple scalar fields 75
multiple scalars (mixed dependencies) 76
multivariable 75
record style 67, 75
scalar and vector 77
scalar and vector (regular grid) 81
scalar, on a regular grid 67
scattered 79
scattered scalar 82
series 73
single-variable 67
time series with text 84
vector 71
warped (see deformed)
with header in same file 74
with header information 69
with text 82

initial dialog box 98
input tabs, adding 37
interactors 39
interleaving 71
interleaving keyword statement 90
interleaving, field 104
isosurfaces 32

K
keyword statements

block 88
dependency 88
end 96
field 88
file 86
format 89
grid 87
header 89
interleaving 90
layout 92
majority 92
points 87
positions 94
recordseparator 92
series 93
structure 94
type 94

keyword syntax 85

L
layout keyword statement 92
lines, contour 29

M
macros, creating 42
macros, sample 59
majority keyword statement 92
Map module 45
Mark menu, Browser 109
menus

Browser 109
Data Prompter 101
File 109
Mark 109
Search 110

model, Data Explorer data 1
Module Builder 2
modules

AutoColor 44
Compute 44
Display 2
in Data Explorer 2
in the VPE 7
Map 45
Plot 46
RubberSheet 30
Switch 37

moving a tool icon 24
multiple scalar fields (example) 75
multiple scalars (example) 76

N
naming a field (example) 70

O
object, controlling appearance of 10
offset area, Browser 111
opening a visual program 6
order, data 104
overview of Data Explorer 1

P
Page menu, Browser 110
Plot module 46
points keyword statement 87
positions keyword statement 94
printing images 47
processing images 46

 Index

 Index 119

Prompter, Data (see Data Prompter)

R
record interleaving 71
record-style data format 67, 75
record-vector interleaving 71
recordseparator keyword statement 92
regular grid, deformed (example) 78
rendering, volume 34
rotation, controlling 11
row data order 104
RubberSheet module 30

S
sample macros 59
sample visual programs 49
saving images 47
scalar and vector data (example) 77, 81
scalar data on a regular grid (example) 67
scalar data, scattered (example) 82
scalar fields, multiple (example) 75
scalar glyphs 34
scalars, multiple (example) 76
scattered data (example) 79
scattered data points, connecting 37
scattered scalar data (example) 82
scripting language, Data Explorer 1, 47
Search menu, Browser 110
separator, series 106
Sequencer 14
series data (example) 73
series interleaving 106
series keyword statement 93
series separator 106
simplified Data Prompter 101
single-variable data (example) 67
size, controlling object 10
slices 32
specifying colormap values 17
starting the Data Browser 109
starting tutorials 5
streamlines (2-D) 30
streamlines (3-D) 33
structure keyword statement 94
Switch module 37
syntax

header file 85
keyword 85

T
tabs, adding input 37
tasks 36

text, in times series 84
text, interspersed with data 82
time series with text 84
tool icon(s)

connecting 23
deleting 24
moving 24

tools (see modules)
tools, data-driven 43
tools, tasks and 36
Tutorial I 4
Tutorial II 22
tutorials, accessing 5
type keyword statement 94
types of grid 64

U
using a header file 111
using Compute 44
using control panels 15
using Map 45
using Plot 46
using the block keyword (example) 80
using the Colormap Editor 16
using the Sequencer 14

V
vector and scalar data (example) 77, 81
vector data (example) 71
vector glyphs 32, 34
view control 10
view, field of 12
viewing direction, controlling 10
visual image, controlling 10
Visual Program Editor (VPE) 2, 22

canvas 7
palettes 7
tool icons 7
window 6

visual programs
editing 22
executing 8
opening 6
sample 49

visualization, data 1
visualizing 2-D data 29
visualizing 3-D data 32
volume rendering 34
VPE (see Visual Program Editor)

W
warped regular grid (example) 78, 81

120 IBM Visualization Data Explorer: QuickStart Guide

window
File Browser 110
Image 9
Visual Program Editor 6

 Index

 Index 121

Readers' Comments — We'd Like to Hear from You

IBM Visualization Data Explorer
QuickStart Guide
Version 3 Release 1 Modification 4

Publication No. SC34-3262-02

Overall, how satisfied are you with the information in this book?

How satisfied are you that the information in this book is:

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? Ø Yes Ø No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Overall satisfaction Ø Ø Ø Ø Ø

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Accurate Ø Ø Ø Ø Ø
Complete Ø Ø Ø Ø Ø
Easy to find Ø Ø Ø Ø Ø
Easy to understand Ø Ø Ø Ø Ø
Well organized Ø Ø Ø Ø Ø
Applicable to your tasks Ø Ø Ø Ø Ø

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments — We'd Like to Hear from You
SC34-3262-02 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Thomas J. Watson Research Center/Hawthorne
Data Explorer Development
P.O. Box 704
YORKTOWN HEIGHTS, NY
USA 10598-0704

Fold and Tape Please do not staple Fold and Tape

SC34-3262-02

IBM

Printed in U.S.A.

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber

SC34-3262-ð2

