<html>
  <head>

    <meta http-equiv="content-type" content="text/html; charset=UTF-8">
  </head>
  <body text="#000000" bgcolor="#FFFFFF">
    <p><font face="serif">Here is some help for doing the calculations
        related to the thermochemistry lab.</font></p>
    <p><font face="serif"><b>REACTION 1</b><br>
      </font></p>
    <p><font face="serif">In the first reaction you did you combined 2
        grams (you need to use your actual mass) of NaOH (s) with 50.0
        ml of water.  The water has a density of 1 g/ml so the mass of
        the water was 50.0 g.   Therefore the TOTAL mass of your
        solution was 52 g.</font></p>
    <p><font face="serif">Remember -- this is now a solution of NaOH
        (aq) so you need to use the specific heat capacity provided on
        the report form 3.93 J/g°C.</font></p>
    <p><font face="serif">To calculate the heat in this case...</font></p>
    <p><font face="serif"><img alt="$q = mc_s\DeltaT =
          (52.00)(3.93)\Delta T$" style="vertical-align: middle;"
          src="cid:part1.E4B96827.077CBC9A@mercer.edu"></font></p>
    <p><font face="serif">Once you compute the heat, you need to convert
        that to an enthalpy by dividing through by the moles of NaOH
        reacted.</font></p>
    <p><font face="serif">Moles of NaOH = (2.00 g) / (40.00 g/mol) =
        0.0500<br>
      </font></p>
    <p><font face="serif">where 40.00 is the molar mass of NaOH. 
        Remember to use YOUR MASS of NaOH in your calculations.</font></p>
    <p><font face="serif">The Enthalpy in J/mol is then <img
          alt="$q/0.0500$" style="vertical-align: middle;"
          src="cid:part2.BDE625B9.2A53BCDC@mercer.edu">.   It is
        exothermic, so the sign should be NEGATIVE.</font></p>
    <p><font face="serif"><br>
      </font></p>
    <p><b><font face="serif">REACTION 2</font></b></p>
    <p><font face="serif">In this reaction you are mixing 50.0 ml of 1 M
        NaOH with 50.0 ml of 1 M.   This will make 100.0 ml of solution
        and we are told on the report form that the density of this
        solution is 1.02 g/ml and that it has a specific heat of 4.02 </font><font
        face="serif"><font face="serif">J/g°C.</font></font></p>
    <p><font face="serif"><font face="serif">In this case the heat is</font></font></p>
    <img alt="\documentclass{article}
      \usepackage[utf8x]{inputenc}
      \pagestyle{empty}
      \begin{document}
      q = mc_s\Delta T = (50.0 + 50.0)(1.02)(4.02) \Delta T%this is
      where your LaTeX expression goes
      \end{document}
      " title="\documentclass{article}
      \usepackage[utf8x]{inputenc}
      \pagestyle{empty}
      \begin{document}
      q = mc_s\Delta T = (50.0 + 50.0)(1.02)(4.02) \Delta T%this is
      where your LaTeX expression goes
      \end{document}
      " style="vertical-align: middle;"
      src="cid:part3.0D9FFDD2.1D2A66B6@mercer.edu">
    <p><font face="serif"><font face="serif"><font face="serif">Where
            the (50.0 + 50.0)(1.02) terms convert the volume to a mass. 
            <br>
          </font></font></font></p>
    <p><font face="serif"><font face="serif"><font face="serif">As
            before, I need to convert the heat to an enthalpy.  In this
            case to find the moles of NaOH I multiply the volume of NaOH
            by the molarity of NaOH.</font></font></font></p>
    <p><font face="serif"><font face="serif"><font face="serif">Moles
            NaOH = (1.00 M)(0.050 L) = 0.050 moles</font></font></font></p>
    <p><font face="serif"><font face="serif"><font face="serif">So
            again, the Enthalpy </font></font></font><font face="serif"><font
          face="serif"><font face="serif"><font face="serif">in J/mol is
              <img alt="$q/0.0500$" style="vertical-align: middle;"
                src="cid:part2.BDE625B9.2A53BCDC@mercer.edu">.   It is
              exothermic, so the sign should be NEGATIVE.</font></font></font></font></p>
    <p><font face="serif"><font face="serif"><font face="serif"><font
              face="serif"><br>
            </font></font></font></font></p>
    <p><b><font face="serif"><font face="serif"><font face="serif"><font
                face="serif">REACTION 3</font></font></font></font></b></p>
    <p><font face="serif"><font face="serif"><font face="serif"><font
              face="serif">In this reaction we are doing essentially
              what we did in REACTION 2, except that we are using solid
              NaOH.   We dilute the HCl solution up to 100 ml initially
              because we want to have, after the addition of the NaOH, a
              solution with approximately the same density and specific
              heat capacity as we had in REACTION 2.   In this
              particular case the mass of the solution will be 102.0
              grams; this is the 100 grams of HCl solution plus the mass
              of the massed NaOH solid, so make sure you use your value
              for the mass of the NaOH.  To calculate the heat:</font></font></font></font></p>
    <p><font face="serif"><font face="serif"><img
            alt="\documentclass{article}
            \usepackage[utf8x]{inputenc}
            \pagestyle{empty}
            \begin{document}
            q = mc_s\DeltaT = (102.0)(1.02)(4.02)\Delta T%this is where
            your LaTeX expression goes
            \end{document}
            " title="\documentclass{article}
            \usepackage[utf8x]{inputenc}
            \pagestyle{empty}
            \begin{document}
            q = mc_s\DeltaT = (102.0)(1.02)(4.02)\Delta T%this is where
            your LaTeX expression goes
            \end{document}
            " style="vertical-align: middle;"
            src="cid:part5.A82BBFE2.92FD9B0C@mercer.edu"></font></font></p>
    <p><font face="serif"><font face="serif"><font face="serif">And to
            compute the enthalpy we need again the moles of NaOH (which
            should be just like the process we followed in step one
            where we had solid NaOH).</font></font></font></p>
    <p><font face="serif"><font face="serif"><font face="serif"><font
              face="serif">Moles of NaOH = (2.00 g) / (40.00 g/mol) =
              0.0500</font></font></font></font></p>
    <p><font face="serif"><font face="serif"><font face="serif"><font
              face="serif"><font face="serif">The Enthalpy in J/mol is
                then <img alt="$q/0.0500$" style="vertical-align:
                  middle;" src="cid:part2.BDE625B9.2A53BCDC@mercer.edu">.  
                It is exothermic, so the sign should be NEGATIVE.</font></font></font></font></font></p>
    <p><font face="serif"><font face="serif"><font face="serif"><br>
          </font></font></font></p>
    <p><font face="serif"><font face="serif"><font face="serif">Convert
            ALL of your enthalpies to kJ/mol and fill out the
            appropriate places on the chart.</font></font></font></p>
    <p><font face="serif"><font face="serif"><font face="serif">Let me
            know if you have questions!!!!<br>
          </font></font></font></p>
    <p><font face="serif"><font face="serif"><font face="serif"><font
              face="serif"><br>
            </font></font></font></font></p>
    <p><font face="serif"></font><br>
    </p>
    <pre class="moz-signature" cols="72">-- 
Andrew J. Pounds, Ph.D.  (<a class="moz-txt-link-abbreviated" href="mailto:pounds_aj@mercer.edu">pounds_aj@mercer.edu</a>)
Professor of Chemistry and Computer Science
Director of the Computational Science Program
Mercer University,  Macon, GA 31207   (478) 301-5627
</pre>
  </body>
</html>