1. For the reaction $BrO_3^- + 5Br^- + 6H^+ \rightarrow 3Br_2 + 3H_2O$ at a particular time, $-\Delta[BrO_3^-]/\Delta t = 1.5 \times 10^{-2}$ M/s. What is $-\Delta[Br^-]/\Delta t$ at the same instant?

13 M/s

 $3.0 \times 10^{-3} \text{ M/s}$ D)

 $7.5 \times 10^{-2} \text{ M/s}$ B)

E) 330 M/s

 $1.5 \times 10^{-2} \text{ M/s}$ C)

2. For the following reaction, $\Delta P(C_6H_{14})/\Delta t$ was found to be -6.2×10^{-3} atm/s.

$$C_6H_{14}(g) \rightarrow C_6H_6(g) + 4H_2(g)$$

Determine $\Delta P(H_2)/\Delta t$ for this reaction at the same time.

6.2 x 10⁻³ atm/s 1.6 x 10⁻³ atm/s 2.5 x 10⁻² atm/s

 $-1.6 \times 10^{-3} \text{ atm/s}$

B)

 $-2.5 \times 10^{-2} \text{ atm/s}$ E)

C)

3. The reaction A + 2B \rightarrow products has the rate law, rate = k[A][B]³. If the concentration of B is doubled while that of A is unchanged, by what factor will the rate of reaction increase?

- A) 2 B) 4 C) 6 D) 8 E) 9
- 4. Consider the following reaction

$$8A(g) + 5B(g) \rightarrow 8C(g) + 6D(g)$$

If [C] is increasing at the rate of 4.0 mol L⁻¹s⁻¹, at what rate is [B] changing?

- -0.40 mol L⁻¹s⁻¹ A)
- B) -2.5 mol L⁻¹s⁻¹
- -4.0 mol L⁻¹s⁻¹ -6.4 mol L⁻¹s⁻¹ C)
- D)
- None of these choices is correct, since its rate of change must be positive.
- 5. For the reaction

$$3A(g) + 2B(g) \rightarrow 2C(g) + 2D(g)$$

the following data was collected at constant temperature. Determine the correct rate law for this reaction.

<u>Trial</u>	Initial [A]	Initial [B]	Initial Rate
	(mol/L)	(mol/L)	(mol/(L·min))
1	0.200	0.100	6.00 x 10 ⁻²
2	0.100	0.100	1.50 x 10 ⁻²
3	0.200	0.200	1.20 x 10 ⁻¹
4	0.300	0.200	2.70×10^{-1}

A) Rate = k[A][B]

Rate = $k[A]^{1.5}[B]$ D)

Rate = $k[A][B]^2$ B)

E) Rate = $k[A]^2[B]$

- Rate = $k[A]^3[B]^2$ C)
- 6. For the reaction

$$A(g) + 2B(g) \rightarrow 2C(g) + 2D(g)$$

the following data was collected at constant temperature. Determine the correct rate law for this reaction.

Initial [A]	Initial [B]	Initial Rate
(mol/L)	(mol/L)	(mol/(L·min))
0.125	0.200	7.25
0.375	0.200	21.75
0.250	0.400	14.50
0.375	0.400	21.75
	(mol/L) 0.125 0.375 0.250	(mol/L) (mol/L) 0.125 0.200 0.375 0.200 0.250 0.400

- A) Rate = k[A][B]

Rate = k[A]D)

Rate = $k[A]^2$ [B] B)

Rate = $k[A]^3$ E)

Rate = $k[A][B]^2$ C)

 7. The rate constant for a reaction is 4.65 L mol⁻¹s⁻¹. What is the overall order of the reaction? A) Zero B) First C) Second D) Third E) More information is needed to determine the overall order. 					
 8. Sulfuryl chloride, SO₂Cl₂(g), decomposes at high temperature to form SO₂(g) and Cl₂(g). The rate constant at a certain temperature is 4.68 x 10⁻⁵s⁻¹. What is the order of the reaction? A) Zero B) First C) Second D) Third E) More information is needed to determine the overall order. 					
	3 0.076 0.030 w for this reaction must be: rate = $k[S_2O_8^2][I_3^3$ rate = $k[S_2O_8^2]$	1.4 x 10 2.8 x 10 1.4 x 10 D) ra	⁻⁵ M/s ⁻⁵ M/s		
If t	47.4 M	314 M, wha D) 2			
 11. A certain first-order reaction A → B is 25% complete in 42 min at 25°C. What is the half-life of the reaction? A) 21 min B) 42 min C) 84 min D) 120 min E) 101 min 					
12. A certa A) B) C)	in first-order reaction A \rightarrow B is 25% compl 6.8 x 10^{-3} min ⁻¹ 8.3 x 10^{-3} min ⁻¹ 3.3 x 10^{-2} min ⁻¹	D) -:	n at 25°C. What is its rate constant? 3.3 x 10 ⁻² min ⁻¹ 1 min ⁻¹		
Answers:					
 Ann Ann	s: B s: C s: D s: B s: E s: D s: C s: B s: E s: D s: E s: A				