WITH SOUUTIONS AT THE END Chapter 14 practice quiz questions Spring 2013 1. For the reaction $BrO_3^- + 5Br^- + 6H^+ \rightarrow 3Br_2 + 3H_2O$ at a particular time, $-\Delta[BrO_3^-]/\Delta t = 1.5 \times 10^{-2}$ M/s. What is $-\Delta[Br^-]/\Delta t$ at the same instant? $3.0 \times 10^{-3} \text{ M/s}$ D) $7.5 \times 10^{-2} \text{ M/s}$ B) E) 330 M/s 1.5 x 10⁻² M/s C) 2. For the following reaction, Δ P(C₆H₁₄)/ Δ t was found to be -6.2 x 10⁻³ atm/s. $C_6H_{14}(g) \rightarrow C_6H_6(g) + 4H_2(g)$ Determine $\Delta P(H_2)/\Delta t$ for this reaction at the same time. 6.2 x 10⁻³ atm/s 1.6 x 10⁻³ atm/s 2.5 x 10⁻² atm/s -1.6 x 10⁻³ atm/s B) -2.5 x 10⁻² atm/s E) 3. The reaction A + 2B \rightarrow products has the rate law, rate = k[A][B]³. If the concentration of B is doubled while that of A is unchanged, by what factor will the rate of reaction increase? - A) 2 B) 4 C) 6 D) 8 E) 9 - 4. Consider the following reaction $8A(g) + 5B(g) \rightarrow 8C(g) + 6D(g)$ If [C] is increasing at the rate of 4.0 mol L-1s-1, at what rate is [B] changing? - -0.40 mol L⁻¹s⁻¹ A) - B) - -2.5 mol L⁻¹s⁻¹ -4.0 mol L⁻¹s⁻¹ C) - -6.4 mol L 1s 1 D) - None of these choices is correct, since its rate of change must be positive. - 5. For the reaction $3A(g) + 2B(g) \rightarrow 2C(g) + 2D(g)$ the following data was collected at constant temperature. Determine the correct rate law for this reaction. | Trial | <u>Initial [A] Initial [B]</u> | | <u>Initial Rate</u> | | |-------|--------------------------------|---------|---------------------------|--| | | (mol/L) | (mol/L) | (mol/(L·min)) | | | 1 | Ò.200 ´ | Ò.100 | 6.00 x 10 ⁻² 1 | | | 2 | 0.100 | 0.100 | 1.50 x 10 ⁻² | | | 3 | 0.200 | 0.200 | 1.20 x 10 ⁻¹ | | | 4 | 0.300 | 0.200 | 2.70 x 10 ⁻¹ | | | | | | | | A) Rate = k[A][B] Rate = $k[A]_{2}^{1.5}[B]$ D) Rate = $k[A][B]^2$ B) Rate = $k[A]^2[B]$ E) - Rate = $k[A]^3[B]^2$ - For the reaction $A(g) + 2B(g) \rightarrow 2C(g) + 2D(g)$ the following data was collected at constant temperature. Determine the correct rate law for this reaction. | ~ ~ | | | | | |-------|-------------|-------------|---------------------|--| | Trial | Initial [A] | Initial [B] | <u>Initial Rate</u> | | | | (mol/L) | (mol/L) | (mol/(L·min)) | | | 1 | 0.125 | 0.200 | 7.25 | | | 2 | 0.375 | 0.200 | 21.75 | | | 3 | 0.250 | 0.400 | 14.50 | | | 4 | 0.375 | 0.400 | 21.75 | | | | | | | | Rate = k[A][B]A) Rate = k[A] B) Rate = $k[A]^2$ [B] Rate = $k[A]^3$ Rate = $k[A][B]^2$ C) | 7. The | 7. The rate constant for a reaction is 4.65 L mol⁻¹s⁻¹. What is the overall order of the reaction? A) Zero B) First C) Second D) Third E) More information is needed to determine the overall order. | | | | | | | | |--|---|--|--------------------------------|---------------------------|-----------------------------------|---|--|--| | 8. Sulfuryl chloride, SO₂Cl₂(g), decomposes at high temperature to form SO₂(g) and Cl₂(g). The rate constant at a certain temperature is 4.68 x 10⁻⁵s⁻¹. What is the order of the reaction? A) Zero B) First C) Second D) Third E) More information is needed to determine the overall order. | | | | | | | | | | | Expt.
1
2
3
e law | # $\frac{[S_2O_8^{2-}]}{0.038}$
0.076
0.076
for this reaction must be | <u>]</u>
0.0
0.0
0.0 | _]
)60
)60 | Initia
1.4 x
2.8 x
1.4 x | I ¯ (aq) → $2SO_4^{2^-} + I_3^-$. al Rate 10^{-5} M/s 10^{-5} M/s 10^{-5} M/s 10^{-5} M/s rate = k[I ¯] rate = k[S ₂ O ₈ ^{2−}][I ¯] | | | | 10. At 2 | 25°C the lf the at 25 A) B) C) | starting concentration | e first-orde
of pesticio | r decompo
de is 0.0314 | 4 M, w
D) | of a pesticide solution is 6.40 x 10 ⁻³ min ⁻¹ . what concentration will remain after 62.0 min 2.11 x 10 ⁻² M 2.68 x 10 ⁻² M | | | | 11. A certain first-order reaction A → B is 25% complete in 42 min at 25°C. What is the half-life of the reaction? A) 21 min B) 42 min C) 84 min D) 120 min E) 101 min | | | | | | | | | | 12. A c | ertain
A)
B)
C) | first-order reaction A -
6.8 x 10 ⁻³ min ⁻¹
8.3 x 10 ⁻³ min ⁻¹
3.3 x 10 ⁻² min ⁻¹ | → B is 25% | omplete | in 42 r
D)
E) | min at 25°C. What is its rate constant?
-3.3 x 10 ⁻² min ⁻¹
11 min ⁻¹ | | | | Answers: | | | | | | | | | | 1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11. | Ans:
Ans:
Ans:
Ans:
Ans:
Ans:
Ans:
Ans: | C
D
B
E
D
C
B
E
D
E | | | | | | | ABJ = -5 × 0.5 Ms⁻¹ SE = -2.5 Ms⁻¹ J'B'