

15.1. Which of the following is not part of the equilibrium constant expression, K	15.1.	Which of the	following is not	part of the equilibrium	ım constant expression.	Kc?
--	-------	--------------	------------------	-------------------------	-------------------------	-----

A) Solids B) Liquids C) Dissolved species D) A and B E) B and C

15.2. Which is the correct equilibrium constant expression for the following reaction?

$$FeO(s) + H_2(g) \stackrel{\longleftarrow}{\longrightarrow} Fe(s) + H_2O(g)$$

A)
$$K_c = [H_2O]/[H_2]$$

 $K_c = [Fe][H_2O] / [Fe_2O_3] [H_2]$

B)
$$K_c = [Fe] [H_2O] / [Fe_2O_3]$$

 $K_c = [H_2]/[H_2O]$

C)
$$K_0 = [Fe_2O_3] [H_2]/[Fe][H_2O]$$

15.3. The equilibrium constant expression for the reaction

 $2\operatorname{BrCl}_3(g) \stackrel{\longleftarrow}{\longrightarrow} \operatorname{Br}_2(g) + 3\operatorname{Cl}_2(g)$ is

A) $K_c = [Br_2] [Cl_2] / [BrCl_3]$

B)
$$K_c = [Br_2] [Cl_2]^5 / [BrCl_3]^2$$

C) $K_c = [Br_2] [Cl_2]^3 / [BrCl_3]^2$

D) $K_c = [BrCl_3]^2 / [Br_2][Cl_2]^3$ E) $K_c = 2[BrCl_3]^2 / ([Br_2] \times 3[Cl_2]^3)$

C)
$$K_c = [Br_2] [Cl_2]^3 / [BrCl_3]^3$$

15.4. Carbon tetrachloride reacts at high temperatures with oxygen to produce two toxic gases, phosgene and chlorine.

$$CCl_4(g) + (1/2)O_2(g) \stackrel{\longleftarrow}{\longrightarrow} COCl_2(g) + Cl_2(g), K_c = 4.4 \times 10^9 \text{ at } 1,000 \text{ K}$$

Calculate
$$K_c$$
 for the reaction $2CCl_4(g) + O_2(g) \xrightarrow{} 2COCl_2(g) + 2Cl_2(g)$.
A) 4.4×10^9 B) 8.8×10^9 C) 1.9×10^{10} D) 1.9×10^{19} E) 2.3×10^{-10}

15.5. 1.75 moles of H₂O₂ were placed in a 2.50 L reaction chamber at 307°C. After equilibrium was reached, 1.20 moles of H₂O₂ remained. Calculate the equilibrium constant, K_c, for

the reaction $2H_2O_2(g) \stackrel{\checkmark}{\longrightarrow} 2H_2O(g) + O_2(g)$. A) 2.0×10^{-4} B) 2.3×10^{-2} C) 2.4×10^{-3} D) 5.5×10^{-3} E) 3.9×10^{-4}

15.6. Consider the reversible reaction: $2NO_2(g) \implies N_2O_4(g)$

If the concentrations of both NO₂ and N₂O₄ are 0.016 mol L⁻¹, what is the value of Q_c ?

15.7. A mixture 0.500 mole of carbon monoxide and 0.400 mole of bromine was placed into a rigid 1.00-L container and the system was allowed to come to equilibrium. The equilibrium concentration of COBr₂ was 0.233 M. What is the value of K_c for this reaction?

$$CO(g) + Br_2(g) \implies COBr_2(g)$$

15.8. At 25°C, the equilibrium constant K_c for the reaction

$$2A(g) \Rightarrow B(g) + C(g)$$

is 0.035. A mixture of 8.00 moles of B and 12.00 moles of C in a 20.0 L container is allowed to come to equilibrium. What is the equilibrium concentration of A?

A)
$$< 0.100 M$$
 B) $0.339 M$ C) $0.678 M$ D) $6.78 M$ E) $13.56 M$

Which of the following correctly describes the relationship between K_c and K_p for the

15.9. Consider the equilibrium reaction: $N_2O_4(g) = 2NO_2(g)$

reaction?

15.15. For the following reaction at equilibrium, which one of the changes below would cause the equilibrium to shift to the *left*?

$$2NOBr(g) \stackrel{\longleftarrow}{\longrightarrow} 2NO(g) + Br_2(g), \quad \Delta H^{\circ}_{rxn} = 30 \text{ kJ/mol}$$

- A) Increase the container volume.
- D) Add more NOBr.

B) Remove some NO.

E) Decrease the temperature.

- C) Remove some Br₂.
- 14.1 Butadiene, C_4H_6 (used to make synthetic rubber and latex paints) dimerizes to C_8H_{12} with a rate law of rate = 0.014 L/(mol·s) $[C_4H_6]^2$. What will be the concentration of C_4H_6 after 3.0 hours if the initial concentration is 0.025 M?
 - A) 0.0052 M B) 0.024 M C) 43 M D) 190 M E) 0.0000 M
- 14.2 What is the slope of a plot of ln k vs. 1/T for the Arrhenius equation k=Ae^{-(Ea/RT)}?
 - A) A B) -k C) $-E_a/R$ D) k E) E_a
- 14.3 The following initial rate data apply to the reaction

Which of the following is the rate law (rate equation) for this reaction?

A) rate = $k[F_2]^2[Cl_2O]^4$

D) rate = $k[F_2][Cl_2O]^2$

B) rate = $k[F_2]^2[Cl_2O]$

E) rate = $k[F_2]^2[Cl_2O]^2$

- C) rate = $k[F_2][Cl_2O]$
- 14.4 The thermal decomposition of acetaldehyde, $CH_3CHO \rightarrow CH_4 + CO$, is a second-order reaction. The following data were obtained at 518°C.

time, s	Pressure CH ₃ CHO, mmH ₁
0	364
42	330
105	290
720	132

Calculate the rate constant for the decomposition of acetaldehyde from the above data.

A) 2.2×10^{-3} /s

D) 6.7×10^{-6} /mmHg·s

B) 0.70 mmHg/s

E) 5.2×10^{-5} /mmHg·s

C) 2.2×10^{-3} /mmHg·s

14.5 Nitric oxide gas (NO) reacts with chlorine gas according to the equation

NO +
$$\frac{1}{2}$$
 Cl₂ \rightarrow NOCl.

The following initial rates of reaction have been measured for the given reagent concentrations.

Expt. #	Rate (M/hr)	<u>NO (M)</u>	<u>Cl₂ (M)</u>
1	1.19	0.50	0.50
2	4.79	1.00	0.50
3	9.59	1.00	1.00

Which of the following is the rate law (rate equation) for this reaction?

A) Rate = k[NO]

- D) Rate = $k[NO]^2[Cl_2]$
- B) Rate = $k[NO][Cl_2]^{1/2}$

E) Rate = $k[NO]^2[Cl_2]^2$

C) Rate = $k[NO][Cl_2]$

14.6 A reaction has the following rate law:

Rate =
$$k[A][B]^2$$

In experiment 1, the concentrations of A and B are both 0.10 mol L⁻¹; in experiment 2, the concentrations are both 0.30 mol L⁻¹. If the temperature stays constant, what is the value of the ratio, Rate(2)/Rate(1)?

A) 3.0 B) 6.0 C) 9.0 D) 18 E) 27

14.7 The activation energy for the following first-order reaction is 102 kJ/mol.

$$N_2O_5(g) \rightarrow 2NO_2(g) + (1/2)O_2(g)$$

The value of the rate constant (k) is 1.35×10^{-4} s⁻¹ at 35°C. What is the value of k at 0°C (R = 8.314 J/mol K)?

A) $8.2 \times 10^{-7} \text{ s}^{-1}$

D) $2.2 \times 10^{-2} \text{ s}^{-1}$

 $\dot{\text{B}}$ $1.9 \times 10^{-5} \, \text{s}^{-1}$

E) None of these

- C) $4.2 \times 10^{-5} \text{ s}^{-1}$
- 14.8 The elementary reaction $HBr(g) + Br(g) \rightarrow H(g) + Br_2(g)$ is endothermic.
 - a. Would you expect the rate constant for the back reaction to be smaller or larger than that for the forward reaction? Explain, briefly.
 - b. Draw a fully-labeled reaction energy diagram for this reaction, showing the locations of the reactants, products and transition state.

Answers:

15.1.	Ans:	D
15.2.	Ans:	A
15.3.	Ans:	C
15.4.	Ans:	D
15.5.	Ans:	В
15.6.	Ans:	E
15.7.	Ans:	A
15.8.	Ans:	C
15.9.	Ans:	В
15.10.	Ans:	C
15.11.	Ans:	В

15.12. Ans: E

- 15.13. Ans: B 15.14. Ans: C
- 15.14. Ans: C 15.15. Ans: E
- 14.1. Ans: A
- 14.2. Ans: C
- 14.3. Ans: C 14.4. Ans: D
- 14.5. Ans: D
- 14.6. Ans: E
- 14.7. Ans: A
- 14.8. On your own

15.7
$$CQ_{5} + B_{5}Q_{5} = COB_{7}Q_{5}$$
) | L container so calculating mittal $C = 0.500 + 0.400 + 0.1233$
 $C = 0.500 - 0.233 + 0.400.0233$
 $C = 0.267 = 0.167$
 $C = 0.233 = 0.233 = 0.233 = 0.233 = 0.233 = 0.233 = 0.247 = 0.167 = 0.400 + 0.400$

15-9
$$K_{p} = K_{c}(RT)^{\Delta N}$$
 $1N_{2}O_{4} = 2NO_{2}$
 $K_{p} = K_{c}RT$ B^{n} $\Delta N = 2-1=1$

15-10 $2NO_{3}$ $Cl_{2}O_{3} = 2NO_{2}O_{4}$ $\Delta N = 2-3=-7$
 $K_{p} = K_{c}(RT)^{-1}$ so $K_{c} = K_{p}RT = 6.5 \times 10^{4} \cdot 0.08206 \times 306$
 $= 1.6 \times 10^{4}$ E^{n}

15-11 $K_{p} = K_{c}(RT)^{\Delta N}$ $\Delta N = 0$ for $N_{2} + O_{2} = 2NO$ $(2-2-8)$
 $80 K_{p} = K_{c} = 4.1 \times 10^{4}$ B^{n}

15-12 $C_{3} + CO_{2}O_{3} = 2CO_{3}$ $K_{p} = \frac{(RO_{2})^{2}}{(RO_{2})^{2}} = 10.7$
 $P_{c} = 10 \text{ And } P_{c} + P_{c}O_{2}$ $P_{c}O_{3} = 10.7$
 $P_{c}O_{2} = 1 - P_{c}O_{3}$ $P_{c}O_{3} = 10.7$
 $P_{c}O_{4} = 10.7 - 10.7 P_{c}O_{4}$
 $P_{c}O_{4} = 10.7 P_{c}O_{4}$
 $P_{c}O_{5} = 10.7 - 10.7 P_{c}O_{5}$
 $P_{c}O_{5} = 10.7 P_{c}O_{5}$
 $P_{c}O_{$

15-14 To make more pids, Add reactants (a becomes less thank) Remove pids (a becomes less)
Remove prods (a becomes less) thank Ren Responds by going to
Increase pressure, Rxn Responds by agoing to Side of fewer wolds for endothermic fxns, need to odd heat to force Rxn towards pross Conclusing "C"
for endotherwice fors, neld to add reads
30 CM034
15-15 A - increase Vol, Lower P Room for more molecules Rxn would g right R row me M' a lenthy Kigoes right
B-remove NO; a less than K; goes right c Remove Brz same as B
Yes' De crease Temp favors Reactanth for ends therwic RXNS
14-1 2^{n0} order $(A)^{-1}$ $(k + A)^{-1}$ $(A)^{-1}$ $(A)^{-1$
$\int A = 0.014.10800 + \frac{1}{0.025}$ $A = 0.025 m$
$= (151.2 + 40)^{-1}$
$[A]_{\epsilon} = (P1.2)' = [0.0052 \text{ M}](B'')$

14-2 la(k)=(Ae-Ea/A) luk= -Eq x 1 + luk

R slope ("")" 14-3 Rote for F2 use 1+3 Ratedoubles Wy conc double first order or if you wish Rate & CF2]X En C/20 use 1+2 conc xt Rato xt ("C") = 212 - x 14-4 use II= kt + IA I used t= 8 + t= 105
A = 364mmHz A=290mmHz 290 = K (OS) + 369 (Just use 2 points) 7.040 = K(05) 14-5 for NO use 1+2 conc doubles Rate x4 Rate x []*
200 John For 12 243 cone doubles Rester doubles first order ("D")

14-6 Rato(2)
$$K(0.3)(0.3)^2 = 21124$$

Rato(1) $K(0.1)(0.1)^2 = 21124$

Kas constart

so cancels

$$\frac{\ln k_{1}}{k_{2}} = \frac{E_{q}}{12} \left(\frac{1}{12} - \frac{1}{11} \right) \frac{\ln k_{1}}{185 \times 10^{4}} = \frac{102000 \text{ find}}{8.314 \text{ J/bolk}} \left(\frac{1}{308} - \frac{1}{273} \right) \\
k_{1} = 1.35 \times 10^{4} \text{ s}^{-1} T_{2} = 308 \text{ K} \text{ kin k}_{1} = \frac{1}{1.35 \times 10^{4}} \left(\frac{5}{10} \right) \\
k_{1} = ? \qquad T_{1} = 273 \text{ K} \left(\frac{1}{1.35 \times 10^{4}} \right) = \frac{1}{1.35 \times 10^{4}} \left(\frac{1}{1.35 \times 10^{4}} \right) = \frac{1}{1.35 \times 10^{4}} \left(\frac{1}{1.35 \times 10^{4}} \right) = \frac{1}{1.35 \times 10^{4}} \left(\frac{1}{1.35 \times 10^{4}} \right) = \frac{1}{1.35 \times 10^{4}} \left(\frac{1}{1.35 \times 10^{4}} \right) = \frac{1}{1.35 \times 10^{4}} \left(\frac{1}{1.35 \times 10^{4}} \right) = \frac{1}{1.35 \times 10^{4}} \left(\frac{1}{1.35 \times 10^{4}} \right) = \frac{1}{1.35 \times 10^{4}} \left(\frac{1}{1.35 \times 10^{4}} \right) = \frac{1}{1.35 \times 10^{4}} \left(\frac{1}{1.35 \times 10^{4}} \right) = \frac{1}{1.35 \times 10^{4}} \left(\frac{1}{1.35 \times 10^{4}} \right) = \frac{1}{1.35 \times 10^{4}} \left(\frac{1}{1.35 \times 10^{4}} \right) = \frac{1}{1.35 \times 10^{4}} \left(\frac{1}{1.35 \times 10^{4}} \right) = \frac{1}{1.35 \times 10^{4}} \left(\frac{1}{1.35 \times 10^{4}} \right) = \frac{1}{1.35 \times 10^{4}} \left(\frac{1}{1.35 \times 10^{4}} \right) = \frac{1}{1.35 \times 10^{4}} \left(\frac{1}{1.35 \times 10^{4}} \right) = \frac{1}{1.35 \times 10^{4}} \left(\frac{1}{1.35 \times 10^{4}} \right) = \frac{1}{1.35 \times 10^{4}} \left(\frac{1}{1.35 \times 10^{4}} \right) = \frac{1}{1.35 \times 10^{4}} \left(\frac{1}{1.35 \times 10^{4}} \right) = \frac{1}{1.35 \times 10^{4}} \left(\frac{1}{1.35 \times 10^{4}} \right) = \frac{1}{1.35 \times 10^{4}} \left(\frac{1}{1.35 \times 10^{4}} \right) = \frac{1}{1.35 \times 10^{4}} \left(\frac{1}{1.35 \times 10^{4}} \right) = \frac{1}{1.35 \times 10^{4}} \left(\frac{1}{1.35 \times 10^{4}} \right) = \frac{1}{1.35 \times 10^{4}} \left(\frac{1}{1.35 \times 10^{4}} \right) = \frac{1}{1.35 \times 10^{4}} \left(\frac{1}{1.35 \times 10^{4}} \right) = \frac{1}{1.35 \times 10^{4}} \left(\frac{1}{1.35 \times 10^{4}} \right) = \frac{1}{1.35 \times 10^{4}} \left(\frac{1}{1.35 \times 10^{4}} \right) = \frac{1}{1.35 \times 10^{4}} \left(\frac{1}{1.35 \times 10^{4}} \right) = \frac{1}{1.35 \times 10^{4}} \left(\frac{1}{1.35 \times 10^{4}} \right) = \frac{1}{1.35 \times 10^{4}} \left(\frac{1}{1.35 \times 10^{4}} \right) = \frac{1}{1.35 \times 10^{4}} \left(\frac{1}{1.35 \times 10^{4}} \right) = \frac{1}{1.35 \times 10^{4}} \left(\frac{1}{1.35 \times 10^{4}} \right) = \frac{1}{1.35 \times 10^{4}} \left(\frac{1}{1.35 \times 10^{4}} \right) = \frac{1}{1.35 \times 10^{4}} \left(\frac{1}{1.35 \times 10^{4}} \right) = \frac{1}{1.35 \times 10^{4}} \left(\frac{1}{1.35 \times 10^{4}} \right) = \frac{1}{1.35 \times 10^{4}} \left(\frac{1}{1.35 \times 10^{4}} \right) = \frac{1}{1.35 \times 10^{4}} \left(\frac{1}{1.35 \times 10^{4}} \right) = \frac{1}{1.35 \times 10^{4}} \left(\frac{1}{1.35 \times 10^{4}} \right) =$$

$$\frac{k_{1}}{1.35 \times 10^{4}} = 0.00606$$

$$K_{1} = 8.17 \times 10^{7}$$

$$K_{1} = 8.17 \times 10^{7}$$

14-8

framsition 11 Starte