

CHM 112.009
Additional Problems – Chapter 16

1. Identify the species that is amphiprotic and write one equation for its reaction with OH^- (*aq*) and another for its reaction with H^+ (*aq*).

2. What is the $[\text{OH}^-]$ in...

- (a) paint stripper, pH = 13.7
- (b) rhubarb, pH = 3.65
- (c) blood plasma, pH = 7.42

3. Describe how you would prepare 2.00 L of an aqueous solution having a pH of 3.60 if you had a supply of 0.100 M HCl available.

4. Hydrazoic acid, HN_3 , ($\text{pK}_a = 4.72$) is perhaps best known through its sodium salt, sodium azide, NaN_3 which is the gas forming substance of automobile airbag systems. What molarity of HN_3 is required to produce an aqueous solution with pH = 3.10?

5. Codeine, $\text{C}_{18}\text{H}_{21}\text{NO}_3$, a commonly presecribed painkiller, is a weak base. A saturated aqueous solution contains 1.00 g of codeine in 120 mL of solution and has a pH = 9.8. What is the K_b of codeine?

6. Predict whether each of the following solutions is acidic, basic, or neutral.

- (a) $\text{CH}_3\text{CH}_2\text{COOK}$ (*aq*)
- (b) $\text{Mg}(\text{NO}_3)_2$ (*aq*)
- (c) NH_4CN (*aq*)

7. For a solution that is 0.602 M NH_4Cl , determine the pH.

8. In the titration of 20.00 mL of 0.500 M HCl by 0.500 M NaOH, calculate the volume of 0.500 M NaOH required to reach a pH of 2.0.

9. Calculate the concentration at equilibrium of H_2CO_3 , HCO_3^- , CO_3^{2-} , and H_3O^+ in a solution where the initial $[\text{H}_2\text{CO}_3] = 0.034$

10. Sodium cyanide (NaCN) is dissolved in water. If the concentration of sodium cyanide is 0.45 M, what is the pH of the solution. The K_a for hydrocyanic acid (HCN) is 6.17×10^{-10} .