<html>
<head>
<meta content="text/html; charset=ISO-8859-1"
http-equiv="Content-Type">
</head>
<body bgcolor="#FFFFFF" text="#000000">
<div class="moz-cite-prefix"><br>
<br>
On 07/04/13 21:24, wrote:<br>
</div>
<blockquote
cite="mid:C40B2F181831EF44A88CD735258278030261C41AFE@MERCERMAIL.MercerU.local"
type="cite">
<meta http-equiv="Content-Type" content="text/html;
charset=ISO-8859-1">
<meta name="GENERATOR" content="MSHTML 10.00.9200.16618">
<style id="owaParaStyle"><!--P {
        MARGIN-BOTTOM: 0px; MARGIN-TOP: 0px
}
--></style>
<div style="direction: ltr;font-family: Tahoma;color:
#000000;font-size: 10pt;">
<p>Hey Dr. Pounds,</p>
<p>I was attempting to do quiz 4 and I got stuck on question 1
part C. I understand how to do the problem, but I do not
understand where you got the k. Can you explain this to me?</p>
<p> </p>
<p> </p>
<p>Thank you</p>
<p><br>
</p>
</div>
</blockquote>
<br>
Since I now have values for the Activation Energy and the
Pre-Exponential term, I have the major components of the Arrhenius
equation<br>
<br>
<img style="vertical-align: middle"
src="cid:part1.06000000.01060204@mercer.edu" alt="$k = A
e^{-\frac{E_a}{RT}}$"><br>
<br>
<br>
by using these with the temperature and gas constant I can come up
with value for <img style="vertical-align: middle"
src="cid:part2.05080801.07090205@mercer.edu" alt="$k$">.<br>
<br>
<pre class="moz-signature" cols="72">--
Andrew J. Pounds, Ph.D. (<a class="moz-txt-link-abbreviated" href="mailto:pounds_aj@mercer.edu">pounds_aj@mercer.edu</a>)
Professor of Chemistry and Computer Science
Mercer University, Macon, GA 31207 (478) 301-5627
<a class="moz-txt-link-freetext" href="http://faculty.mercer.edu/pounds_aj">http://faculty.mercer.edu/pounds_aj</a>
</pre>
</body>
</html>