<html>
<head>
<meta content="text/html; charset=ISO-8859-1"
http-equiv="Content-Type">
</head>
<body bgcolor="#FFFFFF" text="#000000">
<div class="moz-cite-prefix">On 02/02/14 08:46, Towe wrote:<br>
</div>
<blockquote
cite="mid:C40B2F181831EF44A88CD735258278030930D7E2A8@MERCERMAIL.MercerU.local"
type="cite">
<meta http-equiv="Content-Type" content="text/html;
charset=ISO-8859-1">
<meta http-equiv="X-UA-Compatible" content="IE=10">
<meta name="GENERATOR" content="MSHTML 10.00.9200.16750">
<style id="owaParaStyle" style="display: none;"><!--P {margin-top:0;margin-bottom:0;}--></style>
<div name="divtagdefaultwrapper" id="divtagdefaultwrapper"
style="font-family: Calibri,Arial,Helvetica,sans-serif;
font-size: 12pt; color: #000000; margin: 0">
<p>Hello Dr. Pounds,</p>
<p> </p>
<p>I had two questions. 1. Could you explain how you got your
answer on number 1 part B on quiz 3? </p>
</div>
</blockquote>
<br>
Avogadro's law (p 426 of your text) states that, for gases, volumes
are proportional to the moles of gas. In the problem on the quiz
the percent by volume was give for each gas. That then, because of
Avogadro's law, translates to a mole percentage. On the quiz I
converted the percentage to a fraction and multipled by the total
pressure to come up with the partial pressure of oxygen.<br>
<br>
<br>
<blockquote
cite="mid:C40B2F181831EF44A88CD735258278030930D7E2A8@MERCERMAIL.MercerU.local"
type="cite">
<div name="divtagdefaultwrapper" id="divtagdefaultwrapper"
style="font-family: Calibri,Arial,Helvetica,sans-serif;
font-size: 12pt; color: #000000; margin: 0">
<p>2. Could you explain how I enter in the log problem on number
14 B in the additional problems for chapter 11?</p>
<p> </p>
<p>Thanks,</p>
</div>
</blockquote>
<br>
<img style="vertical-align: middle"
src="cid:part1.06030808.07080908@mercer.edu" alt="$\log P = 7.3605
- \frac{1617.9}{t+240.17}$"><br>
<br>
Let's rearrange for t<br>
<br>
<img style="vertical-align: middle"
src="cid:part2.05080608.00000309@mercer.edu" alt="$\log P - 7.3605
= - \frac{1617.9}{t+240.17}$"><br>
<br>
<img style="vertical-align: middle"
src="cid:part3.06010607.09050401@mercer.edu" alt="$\frac{log P -
7.3605}{-1617.9} = \frac{1}{t+240.17}$"><br>
<br>
<img style="vertical-align: middle"
src="cid:part4.09080407.06040706@mercer.edu"
alt="$\frac{-1617.9}{log P - 7.3605} = t+240.17$"><br>
<br>
<img style="vertical-align: middle"
src="cid:part5.04010303.09050304@mercer.edu"
alt="$\frac{-1617.9}{log P - 7.3605} - 240.17 = t$"><br>
<br>
Since it is the normal boiling point, the pressure is 1 atm -- but
this problem wants the pressure expressed in <br>
mmHg -- so it is 760 mmHg.<br>
<br>
<img style="vertical-align: middle"
src="cid:part6.03000502.05030409@mercer.edu"
alt="$\frac{-1617.9}{\log(760) - 7.3605} - 240.17 = t = 121$"><br>
<br>
So, since 121 is the temperature at which the vapor pressure is 760
mmHg, it is the boiling point.<br>
<br>
<br>
<pre class="moz-signature" cols="72">--
Andrew J. Pounds, Ph.D. (<a class="moz-txt-link-abbreviated" href="mailto:pounds_aj@mercer.edu">pounds_aj@mercer.edu</a>)
Professor of Chemistry and Computer Science
Mercer University, Macon, GA 31207 (478) 301-5627
<a class="moz-txt-link-freetext" href="http://faculty.mercer.edu/pounds_aj">http://faculty.mercer.edu/pounds_aj</a>
</pre>
</body>
</html>