<html>
<head>
<meta content="text/html; charset=windows-1252"
http-equiv="Content-Type">
</head>
<body bgcolor="#FFFFFF" text="#000000">
<div class="moz-cite-prefix">On 02/10/2015 06:40 PM, wrote:<br>
</div>
<blockquote
cite="mid:C40B2F181831EF44A88CD73525827803130E198D37@MERCERMAIL.MercerU.local"
type="cite">
<meta http-equiv="Content-Type" content="text/html;
charset=windows-1252">
<style type="text/css" style="display:none"><!-- p { margin-top: 0px; margin-bottom: 0px; }--></style>
<div id="divtagdefaultwrapper"
style="font-size:12pt;color:#000000;background-color:#FFFFFF;font-family:Calibri,Arial,Helvetica,sans-serif;">
<p>I am reworking some of the homework problems, and I got to
number 40 in chapter 10, and my answer is 64.58mL, but the
answer online is 70.7mL. You worked it by solving for the
moles, then doing PV=nRT, and I used P1V1=P2V2. Would that
explain the 6mL difference?<br>
</p>
<p><br>
</p>
<p><br>
</p>
</div>
</blockquote>
<br>
Using <img style="vertical-align: middle"
src="cid:part1.05060606.02010904@mercer.edu" alt="$P_1V_1=P_2V_2$">
assumes constant temperature and number of moles. In this case the
temperature is changing too -- so use the last set of measurements
to determine the number of moles and then find the volume for the
first set of measurements.<br>
<br>
<pre class="moz-signature" cols="72">--
Andrew J. Pounds, Ph.D. (<a class="moz-txt-link-abbreviated" href="mailto:pounds_aj@mercer.edu">pounds_aj@mercer.edu</a>)
Professor of Chemistry and Computer Science
Mercer University, Macon, GA 31207 (478) 301-5627
<a class="moz-txt-link-freetext" href="http://faculty.mercer.edu/pounds_aj">http://faculty.mercer.edu/pounds_aj</a>
</pre>
</body>
</html>