CHM 330 - Worksheet 3 Prof. A.J. Pounds Spring 2022

1. At 320°C and normal atmospheric pressure, the unimolecular decomposition of sulfuryl chloride,

$$SO_2Cl_2(g) \longrightarrow SO_2(g) + Cl_2(g)$$

proceeds via first order kinetics with a half life of 525 minutes. If the initial concentration of sulfuryl chloride is 0.125 M:

- (a) What will be the concentration after 12 hours?
- (b) How long, in hours, will it take 95% of the SO_2Cl_2 to decompose?
- 2. The following kinetic data were obtained for the reaction

$$2ICl(g) + H_2(g) \longrightarrow I_2(g) + 2HCl(g)$$

	Initial	Initial	Initial
Experiment	[ICl]	$[\mathrm{H}_2]$	Rate
	$\mathrm{mol}\!\cdot\!\mathrm{L}^{-1}$	$\text{mol} \cdot \text{L}^{-1}$	$\text{mol} \cdot \text{L}^{-1} \cdot \text{s}^{-1}$
1	1.5×10^{-3}	1.5×10^{-3}	3.7×10^{-7}
2	3.0×10^{-3}	1.5×10^{-3}	7.4×10^{-7}
3	3.0×10^{-3}	4.5×10^{-3}	2.2×10^{-6}
4	4.7×10^{-3}	2.7×10^{-3}	?

What is the initial rate in experiment 4?

3. For the following two-step mechanism;

$$A + B \xrightarrow{k_1} C$$

$$C \xrightarrow{k_2} D + B$$

Use the steady state approximation and derive the proposed rate law for the disappearance of A.

4. Kinetic experiments were performed on the **first order** reaction

$$B_2 \longrightarrow 2B$$

to determine the reaction's temperature dependence. The resulting data are found in the table below

	Initial	Temperature	Initial
Experiment	$[B_2]$	$^{\circ}\mathrm{C}$	Rate
	$\text{mol}\cdot \text{L}^{-1}$		$(\text{mol } B_2) \cdot L^{-1} \cdot s^{-1}$
1	0.10	150	3.2×10^{-4}
2	0.20	300	6.0×10^{-3}
3	0.15	250	?

What is the **predicted rate** in the third experiement?

5. For a sugar (S) that reacts with an enzyme (E) via the Michaelis-Menten mechanism

$$S + E \xrightarrow{k_1} ES \xrightarrow{k_2} P + E$$

the following two points of kinetic data were obtained:

	Initial	Initial
Experiment	[S]	Rate
	$\text{mol}\cdot\text{L}^{-1}$	$(\text{mol S}) \cdot L^{-1} \cdot s^{-1}$
1	1.0	0.5459
2	2.5	0.9208

Using the Lineweaver-Burk method what is the value of

- (a) V_{max}
- (b) $K_{\rm M}$

Please express your results to two significant figures.