CHM 330 - Worksheet 5 Prof. Andrew J. Pounds Spring 2022

Name_____

Section_____

- 1. Derive the Hamiltonian operator for the ${\rm H_2}^-$ molecular system.
 - (a) Draw a box around the terms that go to zero in the Born-Oppenheimer approximation.
 - (b) Draw a circle around the term(s) that make the solution unsolvable in a closed analytic form?
- 2. Using the valence electrons of the nitrogen atomic orbitals, s and p, sketch the electron correlation diagram for the orbitals to form the N₂ molecule. Be sure to include all labels and electron populations.
 - (a) Which species has the longer bond length, $\mathrm{N_2}$ or $\mathrm{N_2}^+$
 - (b) Which species has the longer bond length, N_2 or N_2^{-}
 - (c) Which species is affected by a magnetic field, circle all that apply: N_2^+ , N_2 , N_2^-
- 3. Using the valence electrons of the carbon and oxygen atomic orbitals, s and p, sketch the electron correlation diagram for the orbitals to form the CO molecule. Be sure to include all labels and electron populations.
 - (a) Which species has the longer bond length, CO or CO⁺
 - (b) Which species has the higher bond enthalpy, CO or CO⁻
 - (c) Which species is affected by a magnetic field, circle all that apply: CO⁺, CO, CO⁻
 - (d) An electron in CO makes a $\pi \to \pi^*$ transition. How will the bond length of the exicited state be different than that of the ground state?