<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<meta content="text/html; charset=ISO-8859-1"
http-equiv="Content-Type">
<title></title>
</head>
<body bgcolor="#ffffff" text="#000000">
On 10/08/2011 04:42 PM, wrote:
<blockquote
cite="mid:CA765D0D95A04D449667AFA14377899C483AC123EE@MERCERMAIL.MercerU.local"
type="cite">
<meta http-equiv="Content-Type" content="text/html;
charset=ISO-8859-1">
<style type="text/css" id="owaParaStyle"></style>
<div style="direction: ltr; font-family: Tahoma; color: rgb(0, 0,
0); font-size: 10pt;">Dr. Pounds,
<div><br>
</div>
<div>I am working on 10.59 from the book for hw problem set 4.
I have found the radial and angular nodes for the orbitals,
but I am not sure how to find the magnitude of angular
momentum. What is that referring to? I have been looking at
pg. 362 in the book but I'm still not sure what equation to
use. Can you point me in the right direction to solve this
problem?</div>
<div><br>
</div>
<div>Thanks! Hope you're having a good weekend! </div>
<div><br>
</div>
<div><br>
</div>
</div>
</blockquote>
<br>
The magnitude is simply the value <i>L</i> from eqn 362 with the <i>l</i>
values being determined from the mapping to the orbital.<br>
<br>
s orbital -> l=0<br>
p orbital -> l=1<br>
d orbital -> l=2<br>
f orbital -> l=3<br>
<br>
so, for example, a 3d orbital should have angular momentum magnitide
of Sqrt[6] hbar.<br>
<br>
One parting point -- note that this problem is asking you about the
magnitude of the total angular momentum and not asking you anything
about resolving the momentum into it's vector components.<br>
<br>
<br>
<br>
<pre class="moz-signature" cols="72">--
Andrew J. Pounds, Ph.D. (<a class="moz-txt-link-abbreviated" href="mailto:pounds@theochem.mercer.edu">pounds@theochem.mercer.edu</a>)
Associate Professor of Chemistry and Computer Science
Mercer University, Macon, GA 31207 (478) 301-5627
</pre>
</body>
</html>