<html>
<head>
<meta content="text/html; charset=ISO-8859-1"
http-equiv="Content-Type">
</head>
<body bgcolor="#FFFFFF" text="#000000">
On 09/10/2012 08:11 PM, Christine.O.Conroy wrote:
<blockquote
cite="mid:CA765D0D95A04D449667AFA14377899C5560D7459B@MERCERMAIL.MercerU.local"
type="cite">
<meta http-equiv="Content-Type" content="text/html;
charset=ISO-8859-1">
<style type="text/css" id="owaParaStyle"></style>
<div style="direction: ltr;font-family: Tahoma;color:
#000000;font-size: 10pt;">on 2b or number 23 on page 290
<div><br>
</div>
<div>Wjould a stationary point exist whenever the derivative of
y or x is equal to zero or would the derivative of both x and
y y have to be zero for a stationary point to exist?</div>
</div>
</blockquote>
<br>
For this type of problem the stationary point exists where the
derivative of BOTH x and y is zero (i.e. -- at the top of a hilltop
at the bottom of a valley).<br>
<br>
<br>
<pre class="moz-signature" cols="72">--
Andrew J. Pounds, Ph.D. (<a class="moz-txt-link-abbreviated" href="mailto:pounds@theochem.mercer.edu">pounds@theochem.mercer.edu</a>)
Associate Professor of Chemistry and Computer Science
Mercer University, Macon, GA 31207 (478) 301-5627
</pre>
</body>
</html>