<html>
  <head>
    <meta content="text/html; charset=ISO-8859-1"
      http-equiv="Content-Type">
  </head>
  <body bgcolor="#FFFFFF" text="#000000">
    <div class="moz-cite-prefix"><br>
      In terms of the energy defined by <br>
      <br>
      <img style="vertical-align: middle"
        src="cid:part1.05000906.09020006@mercer.edu" alt="$\frac{e^4
        \mu}{\pi^2 \epsilon_0^2 \hbar^2}$"><br>
      <br>
      I get the value of&nbsp; -1/128 for the trial function <img
        style="vertical-align: middle"
        src="cid:part2.00010304.07080303@mercer.edu" alt="$(2-cr)
        e^{-cr/2}$">.&nbsp; That is more positive that the ground state
      energy given in the problem.<br>
      &nbsp;<br>
      <br>
      On 10/20/13 20:05, Connor Gregory Holt wrote:<br>
    </div>
    <blockquote
cite="mid:C40B2F181831EF44A88CD735258278030266A720E5@MERCERMAIL.MercerU.local"
      type="cite">
      <pre wrap="">Dr. Pounds,

When looking at Table 10.1, I noticed  the trial function three that you gave us resembles the radial portion of the 2s orbital, so this gives us the ground state energy for the 2s orbital when I apply the variational method, not the 1s orbital. Was that intentional? Because that energy is lower than the 1s orbital, which would explain why I can't get the energy to be higher than the ground state for the 1s orbital. For every other trial function of a form not similar to the third, I am getting an energy that is either exact or greater. 

Thanks!!

Connor</pre>
    </blockquote>
    <br>
    <br>
    <pre class="moz-signature" cols="72">-- 
Andrew J. Pounds, Ph.D.  (<a class="moz-txt-link-abbreviated" href="mailto:pounds_aj@mercer.edu">pounds_aj@mercer.edu</a>)
Professor of Chemistry and Computer Science
Mercer University,  Macon, GA 31207   (478) 301-5627
<a class="moz-txt-link-freetext" href="http://faculty.mercer.edu/pounds_aj">http://faculty.mercer.edu/pounds_aj</a>
</pre>
  </body>
</html>