<html>
<head>
<meta content="text/html; charset=ISO-8859-1"
http-equiv="Content-Type">
</head>
<body bgcolor="#FFFFFF" text="#000000">
<div class="moz-cite-prefix">On 11/10/13 07:10, Aaron L Featherston
wrote:<br>
</div>
<blockquote
cite="mid:C40B2F181831EF44A88CD735258278030266A72456@MERCERMAIL.MercerU.local"
type="cite">
<meta http-equiv="Content-Type" content="text/html;
charset=ISO-8859-1">
<style type="text/css" id="owaParaStyle" style="display: none;">P {margin-top:0;margin-bottom:0;}</style>
<div name="divtagdefaultwrapper" id="divtagdefaultwrapper"
style="font-family: Calibri,Arial,Helvetica,sans-serif;
font-size: 12pt; color: #000000; margin: 0">
<p>Dr. Pounds, </p>
<p><br>
</p>
<p>For Problem 22, I am able to find the fundamental vibrational
frequencies for D2 and HD. However, I am having difficulty in
solving for the spectroscopic dissociation energy for D2 and
HD using table 13.4. I do not see a clear relationship between
Do for H2 and the others in order to solve for Do.</p>
<p><br>
</p>
</div>
</blockquote>
<br>
You have to compute the fundamental vibrational frequency using the
new reduced masses for HD and D2. I see that equation later in your
e-mail. Now, since the force constant (the curvature of the
potential well) is determined by the electronic environment, it is
not dependent on the masses. Therefore the same force constant used
for H2 can be used for HD and D2. In other words the potential well
is not changing when you change isotopes -- but the locations of the
energy levels inside the well is changing. If the bottom of the
well is the same for all the species, then you should be able to
compute the locations of Do using your new fundamental vibrational
frequencies for D2 and HD.<br>
<br>
<br>
<blockquote
cite="mid:C40B2F181831EF44A88CD735258278030266A72456@MERCERMAIL.MercerU.local"
type="cite">
<div name="divtagdefaultwrapper" id="divtagdefaultwrapper"
style="font-family: Calibri,Arial,Helvetica,sans-serif;
font-size: 12pt; color: #000000; margin: 0">
<p>
</p>
<p>For problem 54, do we have to use equation 13.82 or can we
follow example 13.7 and solve for the equilibrium dissociation
energy in a similar manner.</p>
</div>
</blockquote>
<br>
Since example 13.7 fundamentally assumes that you are using using
equation 13.82 the answer is yes.<br>
<br>
<br>
<blockquote
cite="mid:C40B2F181831EF44A88CD735258278030266A72456@MERCERMAIL.MercerU.local"
type="cite">
<div name="divtagdefaultwrapper" id="divtagdefaultwrapper"
style="font-family: Calibri,Arial,Helvetica,sans-serif;
font-size: 12pt; color: #000000; margin: 0">
<p> Lastly, in problem 56, to solve for the force constant, do
we follow problem 22, and use Ve=(1/2Pi)sqrt(K/u), where Ve is
the fundamental vibrational frequency in table 13.4, and solve
for k?</p>
</div>
</blockquote>
<br>
That will work...<br>
<br>
<blockquote
cite="mid:C40B2F181831EF44A88CD735258278030266A72456@MERCERMAIL.MercerU.local"
type="cite">
<div name="divtagdefaultwrapper" id="divtagdefaultwrapper"
style="font-family: Calibri,Arial,Helvetica,sans-serif;
font-size: 12pt; color: #000000; margin: 0">
<p> </p>
<p><br>
</p>
<p>Thank you for your help.</p>
<p><br>
</p>
<p>Sincerely,</p>
<p> Aaron Featherston</p>
<br>
</div>
</blockquote>
<br>
<pre class="moz-signature" cols="72">--
Andrew J. Pounds, Ph.D. (<a class="moz-txt-link-abbreviated" href="mailto:pounds_aj@mercer.edu">pounds_aj@mercer.edu</a>)
Professor of Chemistry and Computer Science
Mercer University, Macon, GA 31207 (478) 301-5627
<a class="moz-txt-link-freetext" href="http://faculty.mercer.edu/pounds_aj">http://faculty.mercer.edu/pounds_aj</a>
</pre>
</body>
</html>