<html>
<head>
<meta content="text/html; charset=windows-1252"
http-equiv="Content-Type">
</head>
<body text="#000000" bgcolor="#FFFFFF">
<div class="moz-cite-prefix"><br>
<br>
On 03/19/2016 07:53 PM, Kaydren Bailey Orcutt wrote:<br>
</div>
<blockquote
cite="mid:036dadcf8a0141778b299702ac6ba662@spiderman.MercerU.local"
type="cite">
<meta http-equiv="Content-Type" content="text/html;
charset=windows-1252">
<style type="text/css" style="display:none;"><!-- P {margin-top:0;margin-bottom:0;} --></style>
<div id="divtagdefaultwrapper"
style="font-size:12pt;color:#000000;background-color:#FFFFFF;font-family:Calibri,Arial,Helvetica,sans-serif;">
<p>Dr. Pounds, <br>
</p>
<p><br>
</p>
<p>While working through problem c of your problems ( the 12C16O
problem), I think I've encountered some math problems. I even
used mathematica. But my end result is
<br>
</p>
<p>(-2)^(1/4) E^(-((a x^2)/4)) Sqrt[x] Sqrt[\[HBar]] - from
mathematica.</p>
<p>I'm not sure how to even compare this. How can I tell if this
answer is greater than hbar/2 if we don't know x or alpha, and
those are still in the end equations?</p>
<p><br>
Thank you,</p>
<p>Kaydren Orcutt<br>
</p>
</div>
</blockquote>
<br>
x is the independent variable over which you integrate. Alpha is
defined on page 225 of your text. I also had alpha in the class
notes, but I am having some difficulty getting them into PDF for the
web page. <br>
<br>
<br>
<pre class="moz-signature" cols="72">--
Andrew J. Pounds, Ph.D. (<a class="moz-txt-link-abbreviated" href="mailto:pounds_aj@mercer.edu">pounds_aj@mercer.edu</a>)
Professor of Chemistry and Computer Science
Mercer University, Macon, GA 31207 (478) 301-5627
<a class="moz-txt-link-freetext" href="http://faculty.mercer.edu/pounds_aj">http://faculty.mercer.edu/pounds_aj</a>
</pre>
</body>
</html>