<html>
  <head>
    <meta content="text/html; charset=windows-1252"
      http-equiv="Content-Type">
  </head>
  <body text="#000000" bgcolor="#FFFFFF">
    <div class="moz-cite-prefix">On 02/07/2017 08:09 PM,wrote:<br>
    </div>
    <blockquote
      cite="mid:a33cdc171c7a4610b15545068e478f3e@spiderman.MercerU.local"
      type="cite">
      <meta http-equiv="Content-Type" content="text/html;
        charset=windows-1252">
      <style type="text/css" style="display:none;"><!-- P {margin-top:0;margin-bottom:0;} --></style>
      <div id="divtagdefaultwrapper"
style="font-size:12pt;color:#000000;font-family:Calibri,Arial,Helvetica,sans-serif;"
        dir="ltr">
        <p>Dr. Pounds,</p>
        <p><br>
        </p>
        <p>On Part B of the Chapter 15 Particle in a Box problem that
          deals with P(x) how am I to determine the integral parameters?
          Like for E1 I want to use 0.5/a but I don't get any of the
          answer choices when I do it that way. And when I use a/0.5
          then I can't cross out the a's in sin(2pix/a). Does "a" have a
          value that I'm just not getting? So far I have </p>
        <p style="text-align: center; ">2/a[x-(a/2pi)sin(2pix/a)]</p>
        <p style="text-align: left;">It's just the integral parameters
          that I don't get. </p>
        <p style="text-align: left;"><br>
        </p>
        <p style="text-align: left;">Thanks,</p>
        <p style="text-align: left;"><br>
        </p>
        <p style="text-align: left;"><br>
        </p>
      </div>
    </blockquote>
    <br>
    <p><font face="serif">So I am assuming that you are talking about
        problem 15.34.   On part B all space would be on the open
        interval <img style="vertical-align: middle"
          src="cid:part1.31AE893B.00D0927A@mercer.edu"
          alt="$(-\infty,\infty)$">, but we know that for this box,
        since it has a length of <img style="vertical-align: middle"
          src="cid:part2.787728CA.3D420860@mercer.edu" alt="$l$">, that
        "all space" will be on the closed interval <img
          style="vertical-align: middle"
          src="cid:part3.78C5790B.51BD08B4@mercer.edu" alt="$[0,a]$">.  
        If you integrate <img style="vertical-align: middle"
          src="cid:part4.FA7D06D6.81C43908@mercer.edu"
          alt="$\psi^*\psi$"> on that interval you will get one for the
        probability.  In other words there is a 100% probability of
        finding the particle in the box.<br>
      </font></p>
    <p><font face="serif"><br>
      </font></p>
    <p><font face="serif">So, what if we want to find the probability of
        finding the particle on the closed interval [0.32 a, 0.35 a]
        then I set up the following integration.</font></p>
    <p><font face="serif"><br>
      </font></p>
    <p><font face="serif"><img style="vertical-align: middle"
          src="cid:part5.DEC39515.37C200FE@mercer.edu" alt="$\int_{0.32
          a}^{0.35 a} \frac{2}{a} \sin^2\left(\frac{3 \pi x}{a}\right)
          dx$"><br>
      </font></p>
    <p><br>
    </p>
    <p>Mathematica can do this integral easily, or you can use the
      integral tables on page 1016 of your text.   You should get a
      small positive number.</p>
    <p><br>
    </p>
    <p><br>
      <font face="serif"></font></p>
    <p><font face="serif"></font><br>
    </p>
    <pre class="moz-signature" cols="72">-- 
Andrew J. Pounds, Ph.D.  (<a class="moz-txt-link-abbreviated" href="mailto:pounds_aj@mercer.edu">pounds_aj@mercer.edu</a>)
Professor of Chemistry and Computer Science
Mercer University,  Macon, GA 31207   (478) 301-5627
<a class="moz-txt-link-freetext" href="http://faculty.mercer.edu/pounds_aj">http://faculty.mercer.edu/pounds_aj</a>
</pre>
  </body>
</html>