<html>
  <head>
    <meta content="text/html; charset=ISO-8859-1"
      http-equiv="Content-Type">
  </head>
  <body bgcolor="#FFFFFF" text="#000000">
    <div class="moz-cite-prefix">On 10/20/13 11:03, Bryan B Danley
      wrote:<br>
    </div>
    <blockquote
cite="mid:C40B2F181831EF44A88CD735258278030266A720CF@MERCERMAIL.MercerU.local"
      type="cite">
      <meta http-equiv="Content-Type" content="text/html;
        charset=ISO-8859-1">
      <div>How would you use Simpsons rule on that last one with those
        bounds? You would need to divide by zero.&nbsp;</div>
      <div><br>
      </div>
      <div>Bryan</div>
      <div><br>
      </div>
    </blockquote>
    <br>
    The argument of the integral can be rearranged with a little
    manipulation...<br>
    <br>
    <img style="vertical-align: middle"
      src="cid:part1.04040308.09000804@mercer.edu" alt="$\int_0^1 t^{-2}
      \left[ \frac{1}{1+\left(\frac{1}{t}\right)^4} \right] dt =
      \int_0^1 \frac{t^2}{1+t^4} dt$"><br>
    <br>
    <br>
    <blockquote
cite="mid:C40B2F181831EF44A88CD735258278030266A720CF@MERCERMAIL.MercerU.local"
      type="cite">
      <div>
        On Oct 20, 2013, at 10:17 AM, "Andrew J. Pounds" &lt;<a
          moz-do-not-send="true" href="mailto:pounds_aj@mercer.edu">pounds_aj@mercer.edu</a>&gt;
        wrote:<br>
        <br>
      </div>
      <blockquote type="cite">
        <div>
          <div class="moz-cite-prefix">On 10/19/13 13:48, Levi M Mitze
            wrote:<br>
          </div>
          <blockquote
cite="mid:C40B2F181831EF44A88CD735258278030266A720BB@MERCERMAIL.MercerU.local"
            type="cite">
            <div name="divtagdefaultwrapper" id="divtagdefaultwrapper"
              style="font-family: Calibri,Arial,Helvetica,sans-serif;
              font-size: 12pt; color: #000000; margin: 0">
              Hello again, Dr. Pounds.
              <div><br>
              </div>
              <div>I'm having some difficulty understanding what to do
                for problem 3 from section 4.9. I figured I was supposed
                to follow a procedure similar to all the examples in the
                section, but there doesn't seem to be a way to get the
                function (after inverting the variable [t = 1/x]) into a
                form such that the numerator is a function that can be
                used to form a Taylor polynomial. Am I just supposed to
                perform the inversion and then approximate the integral
                using Composite Simpson's (and not worry about Taylor
                polynomials)? What about part c and problem 4?</div>
              <div><br>
              </div>
              <div>Sorry for all the questions,</div>
              <div><br>
              </div>
              <div>Levi</div>
            </div>
          </blockquote>
          <br>
          <font face="serif">No Taylor polynomial needed here.&nbsp; Look at
            the paragraph around around and including equation 4.47 in
            your text.&nbsp; If I want to integrate<br>
            <br>
            &lt;tblatex-8.png&gt;<br>
            <br>
            I can use the substitution provided and convert it to the
            integral<br>
            <br>
            &lt;tblatex-9.png&gt;<br>
            <br>
            which is easily integrated with Simpson's rule.&nbsp; Hopefully
            this puts you on track for the others.&nbsp; If not let me know.<br>
            <br>
            <br>
            <br>
          </font><br>
          <pre class="moz-signature" cols="72">-- 
Andrew J. Pounds, Ph.D.  (<a moz-do-not-send="true" class="moz-txt-link-abbreviated" href="mailto:pounds_aj@mercer.edu">pounds_aj@mercer.edu</a>)
Professor of Chemistry and Computer Science
Mercer University,  Macon, GA 31207   (478) 301-5627
<a moz-do-not-send="true" class="moz-txt-link-freetext" href="http://faculty.mercer.edu/pounds_aj">http://faculty.mercer.edu/pounds_aj</a>
</pre>
        </div>
      </blockquote>
      <blockquote type="cite">
        <div><span>_______________________________________________</span><br>
          <span>csc335 mailing list</span><br>
          <span><a moz-do-not-send="true"
              href="mailto:csc335@theochem.mercer.edu">csc335@theochem.mercer.edu</a></span><br>
          <span><a moz-do-not-send="true"
              href="http://theochem.mercer.edu/mailman/listinfo/csc335">http://theochem.mercer.edu/mailman/listinfo/csc335</a></span><br>
        </div>
      </blockquote>
    </blockquote>
    <br>
    <br>
    <pre class="moz-signature" cols="72">-- 
Andrew J. Pounds, Ph.D.  (<a class="moz-txt-link-abbreviated" href="mailto:pounds_aj@mercer.edu">pounds_aj@mercer.edu</a>)
Professor of Chemistry and Computer Science
Mercer University,  Macon, GA 31207   (478) 301-5627
<a class="moz-txt-link-freetext" href="http://faculty.mercer.edu/pounds_aj">http://faculty.mercer.edu/pounds_aj</a>
</pre>
  </body>
</html>