<html>
<head>
<meta content="text/html; charset=ISO-8859-1"
http-equiv="Content-Type">
</head>
<body bgcolor="#FFFFFF" text="#000000">
<div class="moz-cite-prefix">On 10/18/13 22:51, Levi M Mitze wrote:<br>
</div>
<blockquote
cite="mid:C40B2F181831EF44A88CD735258278030266A720AF@MERCERMAIL.MercerU.local"
type="cite">
<meta http-equiv="Content-Type" content="text/html;
charset=ISO-8859-1">
<style type="text/css" id="owaParaStyle" style="display: none;">P {margin-top:0;margin-bottom:0;}</style>
<div name="divtagdefaultwrapper" id="divtagdefaultwrapper"
style="font-family: Calibri,Arial,Helvetica,sans-serif;
font-size: 12pt; color: #000000; margin: 0">
Hi, Dr. Pounds.
<div><br>
</div>
<div>Am I mistaken in thinking that both 4.6.2.a and 4.6.2.e are
already solved by 4.6.1.a and 4.6.1.e?</div>
<div><br>
</div>
<div>For both, calculating S(a,b), S(a,(a+b)/2), and S((a+b)/2,
b) then plugging them into inequality 4.38 with epsilon
equaling 10e-3 results in the inequality being true.</div>
<div><br>
</div>
<div>Levi</div>
</div>
</blockquote>
<br>
They are not the same -- but they do go together. In problem 1 you
are simply calculating the value of integral over the two
half-intervals using Simpsons rule. No tolerance is set.<br>
<br>
In question 2 you use your prior results, but now actually apply the
method of adaptive quadrature to solve the integrals to the
requested tolerance.<br>
<br>
<pre class="moz-signature" cols="72">--
Andrew J. Pounds, Ph.D. (<a class="moz-txt-link-abbreviated" href="mailto:pounds_aj@mercer.edu">pounds_aj@mercer.edu</a>)
Professor of Chemistry and Computer Science
Mercer University, Macon, GA 31207 (478) 301-5627
<a class="moz-txt-link-freetext" href="http://faculty.mercer.edu/pounds_aj">http://faculty.mercer.edu/pounds_aj</a>
</pre>
</body>
</html>