<html>
<head>
<meta content="text/html; charset=ISO-8859-1"
http-equiv="Content-Type">
</head>
<body bgcolor="#FFFFFF" text="#000000">
<div class="moz-cite-prefix">On 10/19/13 13:48, Levi M Mitze wrote:<br>
</div>
<blockquote
cite="mid:C40B2F181831EF44A88CD735258278030266A720BB@MERCERMAIL.MercerU.local"
type="cite">
<meta http-equiv="Content-Type" content="text/html;
charset=ISO-8859-1">
<style type="text/css" id="owaParaStyle" style="display: none;">P {margin-top:0;margin-bottom:0;}</style>
<div name="divtagdefaultwrapper" id="divtagdefaultwrapper"
style="font-family: Calibri,Arial,Helvetica,sans-serif;
font-size: 12pt; color: #000000; margin: 0">
Hello again, Dr. Pounds.
<div><br>
</div>
<div>I'm having some difficulty understanding what to do for
problem 3 from section 4.9. I figured I was supposed to follow
a procedure similar to all the examples in the section, but
there doesn't seem to be a way to get the function (after
inverting the variable [t = 1/x]) into a form such that the
numerator is a function that can be used to form a Taylor
polynomial. Am I just supposed to perform the inversion and
then approximate the integral using Composite Simpson's (and
not worry about Taylor polynomials)? What about part c and
problem 4?</div>
<div><br>
</div>
<div>Sorry for all the questions,</div>
<div><br>
</div>
<div>Levi</div>
</div>
</blockquote>
<br>
<font face="serif">No Taylor polynomial needed here. Look at the
paragraph around around and including equation 4.47 in your text.
If I want to integrate<br>
<br>
<img style="vertical-align: middle"
src="cid:part1.03090102.09030506@mercer.edu"
alt="$\int_1^{\infty} \frac{1}{1 + x^4} dx$"><br>
<br>
I can use the substitution provided and convert it to the integral<br>
<br>
<img style="vertical-align: middle"
src="cid:part2.04070902.03090309@mercer.edu" alt="$\int_0^1
t^{-2} \left[ \frac{1}{1+\left( \frac{1}{t} \right)^4} \right ]
dt $"><br>
<br>
which is easily integrated with Simpson's rule. Hopefully this puts
you on track for the others. If not let me know.<br>
<br>
<br>
<br>
</font><br>
<pre class="moz-signature" cols="72">--
Andrew J. Pounds, Ph.D. (<a class="moz-txt-link-abbreviated" href="mailto:pounds_aj@mercer.edu">pounds_aj@mercer.edu</a>)
Professor of Chemistry and Computer Science
Mercer University, Macon, GA 31207 (478) 301-5627
<a class="moz-txt-link-freetext" href="http://faculty.mercer.edu/pounds_aj">http://faculty.mercer.edu/pounds_aj</a>
</pre>
</body>
</html>