<html>
<head>
<meta content="text/html; charset=ISO-8859-1"
http-equiv="Content-Type">
</head>
<body bgcolor="#FFFFFF" text="#000000">
<div class="moz-cite-prefix">At t = 0<br>
<br>
<img style="vertical-align: middle"
src="cid:part1.06070709.05060406@mercer.edu" alt="$t \cos(1/t)$"><br>
<br>
will be zero because <br>
<br>
<img style="vertical-align: middle"
src="cid:part2.01040402.07020702@mercer.edu" alt="$\lim_{t \to
0} t \cos(1/t) = 0$"><br>
<br>
<br>
<br>
On 10/20/13 18:09, Bryan B Danley wrote:<br>
</div>
<blockquote
cite="mid:C40B2F181831EF44A88CD735258278030266A720E0@MERCERMAIL.MercerU.local"
type="cite">
<meta http-equiv="Content-Type" content="text/html;
charset=ISO-8859-1">
<style type="text/css" id="owaParaStyle" style="display: none;">P {margin-top:0;margin-bottom:0;}</style>
<div name="divtagdefaultwrapper" id="divtagdefaultwrapper"
style="font-family: Calibri,Arial,Helvetica,sans-serif;
font-size: 12pt; color: #000000; margin: 0">
Yes. I'm sorry. I had a question about part c of that problem
when after swapping x for 1/t, I get t*cos(1/t). How would I use
Simpson's on the bound 0 to 1?<br>
<div style="color: rgb(40, 40, 40);">
<hr tabindex="-1" style="display:inline-block; width:98%">
<div id="divRplyFwdMsg" dir="ltr"><font style="font-size:11pt"
color="#000000" face="Calibri, sans-serif"><b>From:</b>
Andrew J. Pounds <a class="moz-txt-link-rfc2396E" href="mailto:pounds_aj@mercer.edu"><pounds_aj@mercer.edu></a><br>
<b>Sent:</b> Sunday, October 20, 2013 6:06 PM<br>
<b>To:</b> Bryan B Danley; <a class="moz-txt-link-abbreviated" href="mailto:csc335@theochem.mercer.edu">csc335@theochem.mercer.edu</a><br>
<b>Subject:</b> Re: [CSC 335] Section 4.9 Problems</font>
<div> </div>
</div>
<div>
<div class="moz-cite-prefix">On 10/20/13 11:03, Bryan B
Danley wrote:<br>
</div>
<blockquote type="cite">
<div>How would you use Simpsons rule on that last one with
those bounds? You would need to divide by zero. </div>
<div><br>
</div>
<div>Bryan</div>
<div><br>
</div>
</blockquote>
<br>
The argument of the integral can be rearranged with a little
manipulation...<br>
<br>
<img alt="$\int_0^1 t^{-2} \left[
\frac{1}{1+\left(\frac{1}{t}\right)^4} \right] dt =
\int_0^1 \frac{t^2}{1+t^4} dt$"
style="vertical-align:middle"
src="cid:part3.04020901.09040105@mercer.edu"><br>
<br>
<br>
<blockquote type="cite">
<div>On Oct 20, 2013, at 10:17 AM, "Andrew J. Pounds" <<a
moz-do-not-send="true"
href="mailto:pounds_aj@mercer.edu">pounds_aj@mercer.edu</a>>
wrote:<br>
<br>
</div>
<blockquote type="cite">
<div>
<div class="moz-cite-prefix">On 10/19/13 13:48, Levi M
Mitze wrote:<br>
</div>
<blockquote type="cite">
<div name="divtagdefaultwrapper"
id="divtagdefaultwrapper"
style="font-family:Calibri,Arial,Helvetica,sans-serif;
font-size:12pt; color:#000000; margin:0">
Hello again, Dr. Pounds.
<div><br>
</div>
<div>I'm having some difficulty understanding what
to do for problem 3 from section 4.9. I figured
I was supposed to follow a procedure similar to
all the examples in the section, but there
doesn't seem to be a way to get the function
(after inverting the variable [t = 1/x]) into a
form such that the numerator is a function that
can be used to form a Taylor polynomial. Am I
just supposed to perform the inversion and then
approximate the integral using Composite
Simpson's (and not worry about Taylor
polynomials)? What about part c and problem 4?</div>
<div><br>
</div>
<div>Sorry for all the questions,</div>
<div><br>
</div>
<div>Levi</div>
</div>
</blockquote>
<br>
<font face="serif">No Taylor polynomial needed here.
Look at the paragraph around around and including
equation 4.47 in your text. If I want to integrate<br>
<br>
<tblatex-8.png><br>
<br>
I can use the substitution provided and convert it
to the integral<br>
<br>
<tblatex-9.png><br>
<br>
which is easily integrated with Simpson's rule.
Hopefully this puts you on track for the others. If
not let me know.<br>
<br>
<br>
<br>
</font><br>
<pre class="moz-signature" cols="72">--
Andrew J. Pounds, Ph.D. (<a moz-do-not-send="true" class="moz-txt-link-abbreviated" href="mailto:pounds_aj@mercer.edu">pounds_aj@mercer.edu</a>)
Professor of Chemistry and Computer Science
Mercer University, Macon, GA 31207 (478) 301-5627
<a moz-do-not-send="true" class="moz-txt-link-freetext" href="http://faculty.mercer.edu/pounds_aj">http://faculty.mercer.edu/pounds_aj</a>
</pre>
</div>
</blockquote>
<blockquote type="cite">
<div><span>_______________________________________________</span><br>
<span>csc335 mailing list</span><br>
<span><a moz-do-not-send="true"
href="mailto:csc335@theochem.mercer.edu">csc335@theochem.mercer.edu</a></span><br>
<span><a moz-do-not-send="true"
href="http://theochem.mercer.edu/mailman/listinfo/csc335">http://theochem.mercer.edu/mailman/listinfo/csc335</a></span><br>
</div>
</blockquote>
</blockquote>
<br>
<br>
<pre class="moz-signature" cols="72">--
Andrew J. Pounds, Ph.D. (<a moz-do-not-send="true" class="moz-txt-link-abbreviated" href="mailto:pounds_aj@mercer.edu">pounds_aj@mercer.edu</a>)
Professor of Chemistry and Computer Science
Mercer University, Macon, GA 31207 (478) 301-5627
<a moz-do-not-send="true" class="moz-txt-link-freetext" href="http://faculty.mercer.edu/pounds_aj">http://faculty.mercer.edu/pounds_aj</a>
</pre>
</div>
</div>
</div>
</blockquote>
<br>
<br>
<pre class="moz-signature" cols="72">--
Andrew J. Pounds, Ph.D. (<a class="moz-txt-link-abbreviated" href="mailto:pounds_aj@mercer.edu">pounds_aj@mercer.edu</a>)
Professor of Chemistry and Computer Science
Mercer University, Macon, GA 31207 (478) 301-5627
<a class="moz-txt-link-freetext" href="http://faculty.mercer.edu/pounds_aj">http://faculty.mercer.edu/pounds_aj</a>
</pre>
</body>
</html>