<html>
  <head>
    <meta content="text/html; charset=ISO-8859-1"
      http-equiv="Content-Type">
  </head>
  <body bgcolor="#FFFFFF" text="#000000">
    <div class="moz-cite-prefix">At t = 0<br>
      <br>
      &nbsp;<img style="vertical-align: middle"
        src="cid:part1.06070709.05060406@mercer.edu" alt="$t \cos(1/t)$"><br>
      <br>
      &nbsp;will be zero because <br>
      <br>
      <img style="vertical-align: middle"
        src="cid:part2.01040402.07020702@mercer.edu" alt="$\lim_{t \to
        0} t \cos(1/t) = 0$"><br>
      <br>
      <br>
      <br>
      On 10/20/13 18:09, Bryan B Danley wrote:<br>
    </div>
    <blockquote
cite="mid:C40B2F181831EF44A88CD735258278030266A720E0@MERCERMAIL.MercerU.local"
      type="cite">
      <meta http-equiv="Content-Type" content="text/html;
        charset=ISO-8859-1">
      <style type="text/css" id="owaParaStyle" style="display: none;">P {margin-top:0;margin-bottom:0;}</style>
      <div name="divtagdefaultwrapper" id="divtagdefaultwrapper"
        style="font-family: Calibri,Arial,Helvetica,sans-serif;
        font-size: 12pt; color: #000000; margin: 0">
        Yes. I'm sorry. I had a question about part c of that problem
        when after swapping x for 1/t, I get t*cos(1/t). How would I use
        Simpson's on the bound 0 to 1?<br>
        <div style="color: rgb(40, 40, 40);">
          <hr tabindex="-1" style="display:inline-block; width:98%">
          <div id="divRplyFwdMsg" dir="ltr"><font style="font-size:11pt"
              color="#000000" face="Calibri, sans-serif"><b>From:</b>
              Andrew J. Pounds <a class="moz-txt-link-rfc2396E" href="mailto:pounds_aj@mercer.edu">&lt;pounds_aj@mercer.edu&gt;</a><br>
              <b>Sent:</b> Sunday, October 20, 2013 6:06 PM<br>
              <b>To:</b> Bryan B Danley; <a class="moz-txt-link-abbreviated" href="mailto:csc335@theochem.mercer.edu">csc335@theochem.mercer.edu</a><br>
              <b>Subject:</b> Re: [CSC 335] Section 4.9 Problems</font>
            <div>&nbsp;</div>
          </div>
          <div>
            <div class="moz-cite-prefix">On 10/20/13 11:03, Bryan B
              Danley wrote:<br>
            </div>
            <blockquote type="cite">
              <div>How would you use Simpsons rule on that last one with
                those bounds? You would need to divide by zero.&nbsp;</div>
              <div><br>
              </div>
              <div>Bryan</div>
              <div><br>
              </div>
            </blockquote>
            <br>
            The argument of the integral can be rearranged with a little
            manipulation...<br>
            <br>
            <img alt="$\int_0^1 t^{-2} \left[
              \frac{1}{1+\left(\frac{1}{t}\right)^4} \right] dt =
              \int_0^1 \frac{t^2}{1+t^4} dt$"
              style="vertical-align:middle"
              src="cid:part3.04020901.09040105@mercer.edu"><br>
            <br>
            <br>
            <blockquote type="cite">
              <div>On Oct 20, 2013, at 10:17 AM, "Andrew J. Pounds" &lt;<a
                  moz-do-not-send="true"
                  href="mailto:pounds_aj@mercer.edu">pounds_aj@mercer.edu</a>&gt;
                wrote:<br>
                <br>
              </div>
              <blockquote type="cite">
                <div>
                  <div class="moz-cite-prefix">On 10/19/13 13:48, Levi M
                    Mitze wrote:<br>
                  </div>
                  <blockquote type="cite">
                    <div name="divtagdefaultwrapper"
                      id="divtagdefaultwrapper"
                      style="font-family:Calibri,Arial,Helvetica,sans-serif;
                      font-size:12pt; color:#000000; margin:0">
                      Hello again, Dr. Pounds.
                      <div><br>
                      </div>
                      <div>I'm having some difficulty understanding what
                        to do for problem 3 from section 4.9. I figured
                        I was supposed to follow a procedure similar to
                        all the examples in the section, but there
                        doesn't seem to be a way to get the function
                        (after inverting the variable [t = 1/x]) into a
                        form such that the numerator is a function that
                        can be used to form a Taylor polynomial. Am I
                        just supposed to perform the inversion and then
                        approximate the integral using Composite
                        Simpson's (and not worry about Taylor
                        polynomials)? What about part c and problem 4?</div>
                      <div><br>
                      </div>
                      <div>Sorry for all the questions,</div>
                      <div><br>
                      </div>
                      <div>Levi</div>
                    </div>
                  </blockquote>
                  <br>
                  <font face="serif">No Taylor polynomial needed here.&nbsp;
                    Look at the paragraph around around and including
                    equation 4.47 in your text.&nbsp; If I want to integrate<br>
                    <br>
                    &lt;tblatex-8.png&gt;<br>
                    <br>
                    I can use the substitution provided and convert it
                    to the integral<br>
                    <br>
                    &lt;tblatex-9.png&gt;<br>
                    <br>
                    which is easily integrated with Simpson's rule.&nbsp;
                    Hopefully this puts you on track for the others.&nbsp; If
                    not let me know.<br>
                    <br>
                    <br>
                    <br>
                  </font><br>
                  <pre class="moz-signature" cols="72">-- 
Andrew J. Pounds, Ph.D.  (<a moz-do-not-send="true" class="moz-txt-link-abbreviated" href="mailto:pounds_aj@mercer.edu">pounds_aj@mercer.edu</a>)
Professor of Chemistry and Computer Science
Mercer University,  Macon, GA 31207   (478) 301-5627
<a moz-do-not-send="true" class="moz-txt-link-freetext" href="http://faculty.mercer.edu/pounds_aj">http://faculty.mercer.edu/pounds_aj</a>
</pre>
                </div>
              </blockquote>
              <blockquote type="cite">
                <div><span>_______________________________________________</span><br>
                  <span>csc335 mailing list</span><br>
                  <span><a moz-do-not-send="true"
                      href="mailto:csc335@theochem.mercer.edu">csc335@theochem.mercer.edu</a></span><br>
                  <span><a moz-do-not-send="true"
                      href="http://theochem.mercer.edu/mailman/listinfo/csc335">http://theochem.mercer.edu/mailman/listinfo/csc335</a></span><br>
                </div>
              </blockquote>
            </blockquote>
            <br>
            <br>
            <pre class="moz-signature" cols="72">-- 
Andrew J. Pounds, Ph.D.  (<a moz-do-not-send="true" class="moz-txt-link-abbreviated" href="mailto:pounds_aj@mercer.edu">pounds_aj@mercer.edu</a>)
Professor of Chemistry and Computer Science
Mercer University,  Macon, GA 31207   (478) 301-5627
<a moz-do-not-send="true" class="moz-txt-link-freetext" href="http://faculty.mercer.edu/pounds_aj">http://faculty.mercer.edu/pounds_aj</a>
</pre>
          </div>
        </div>
      </div>
    </blockquote>
    <br>
    <br>
    <pre class="moz-signature" cols="72">-- 
Andrew J. Pounds, Ph.D.  (<a class="moz-txt-link-abbreviated" href="mailto:pounds_aj@mercer.edu">pounds_aj@mercer.edu</a>)
Professor of Chemistry and Computer Science
Mercer University,  Macon, GA 31207   (478) 301-5627
<a class="moz-txt-link-freetext" href="http://faculty.mercer.edu/pounds_aj">http://faculty.mercer.edu/pounds_aj</a>
</pre>
  </body>
</html>