<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8">
</head>
<body text="#000000" bgcolor="#FFFFFF">
<font face="serif">I think this was the problem you all asked about
in class yesterday...<br>
<br>
You are asked to approximate the integral <img
style="vertical-align: middle"
src="cid:part1.06080603.04070004@mercer.edu"
alt="$\int_1^{\infty}\frac{\cos(x)}{x^3}dx$"> using composite
Simpson's rule with n=6.<br>
<br>
Once I make the recommended substitution and simplify I get <img
style="vertical-align: middle"
src="cid:part2.06090708.04030704@mercer.edu" alt="$\int_0^1 t
\cos(\frac{1}{t})dt$"> . The problem here is what to do about
the singularity at 0. Since <img style="vertical-align: middle"
src="cid:part3.06050502.09050407@mercer.edu" alt="$\lim_{t
\rightarrow 0} t \cos(\frac{1}{t}) = 0$"> I can use zero for
the <img style="vertical-align: middle"
src="cid:part4.08050704.02010802@mercer.edu" alt="$f(a)$"> term
in the composite Simpsons rule formula. In this case there is no
need to expand in a Taylor polynomial.<br>
<br>
Does that help?<br>
<br>
</font>
<pre class="moz-signature" cols="72">--
Andrew J. Pounds, Ph.D. (<a class="moz-txt-link-abbreviated" href="mailto:pounds_aj@mercer.edu">pounds_aj@mercer.edu</a>)
Professor of Chemistry and Computer Science
Mercer University, Macon, GA 31207 (478) 301-5627
<a class="moz-txt-link-freetext" href="http://faculty.mercer.edu/pounds_aj">http://faculty.mercer.edu/pounds_aj</a>
</pre>
</body>
</html>