<html>
  <head>

    <meta http-equiv="content-type" content="text/html; charset=utf-8">
  </head>
  <body text="#000000" bgcolor="#FFFFFF">
    <font face="serif">Wow -- the last 36 hours has been BUSY...  
      Anyway, there were a few questions about the PLU decomposition at
      the end of class yesterday and I wanted to make sure we were all
      on the same page.<br>
      <br>
      If <img style="vertical-align: middle"
        src="cid:part1.01060203.05080601@mercer.edu"
        alt="$\hat{A}\vec{x}= \vec{b}$"> then I can get the same result
      by premultiplying both sides with the permutation matrix <img
        style="vertical-align: middle"
        src="cid:part2.07020201.03010803@mercer.edu"
        alt="$\hat{P}\hat{A}\vec{x}=\hat{P}\vec{b}$"> and if <img
        style="vertical-align: middle"
        src="cid:part3.04050605.03060108@mercer.edu" alt="$\hat{A}$">
      has been broken down into its LU decomposition then <br>
    </font><font face="serif"><img style="vertical-align: middle"
        src="cid:part4.05090300.07050303@mercer.edu"
        alt="$\hat{P}\hat{L}\hat{U}\vec{x}=\hat{P}\vec{b}$">.<br>
      <br>
      So, if I factor matrix <img style="vertical-align: middle"
        src="cid:part3.04050605.03060108@mercer.edu" alt="$\hat{A}$">
      into an PLU decomposition and then give the algorithm the vector <img
        style="vertical-align: middle"
        src="cid:part6.05020009.00020609@mercer.edu" alt="$\vec{b}$">, I
      recover the solution vector <img style="vertical-align: middle"
        src="cid:part7.07050305.08000002@mercer.edu" alt="$\vec{x}$"> by
      first permuting the vector <img style="vertical-align: middle"
        src="cid:part6.05020009.00020609@mercer.edu" alt="$\vec{b}$">
      and solving the system<br>
      <br>
      <img style="vertical-align: middle"
        src="cid:part9.08070003.04000609@mercer.edu"
        alt="$\hat{L}\vec{y}=\hat{P}\vec{b}$"><br>
      <br>
      and then follow this with<br>
      <br>
      <img style="vertical-align: middle"
        src="cid:part10.04050005.06070904@mercer.edu"
        alt="$\hat{U}\vec{x} = \vec{y}$">.<br>
      <br>
      Before you ask "hey -- where is the permutation matrix on the left
      side of those last two equations" remember that it was already
      applied to get the LU factorization.  We simply use the <img
        style="vertical-align: middle"
        src="cid:part11.04010309.06080106@mercer.edu" alt="$\hat{P}$">
      on the right above to bring the <img style="vertical-align:
        middle" src="cid:part6.05020009.00020609@mercer.edu"
        alt="$\vec{b}$"> into the same permuted order.<br>
      <br>
      Does that help clarify things?<br>
      <br>
    </font>
    <pre class="moz-signature" cols="72">-- 
Andrew J. Pounds, Ph.D.  (<a class="moz-txt-link-abbreviated" href="mailto:pounds_aj@mercer.edu">pounds_aj@mercer.edu</a>)
Professor of Chemistry and Computer Science
Mercer University,  Macon, GA 31207   (478) 301-5627
<a class="moz-txt-link-freetext" href="http://faculty.mercer.edu/pounds_aj">http://faculty.mercer.edu/pounds_aj</a>
</pre>
  </body>
</html>