<!DOCTYPE html>
<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
</head>
<body>
<p><font face="serif">So if you ware working on homework 2, there
are are few pieces of help I want to offer to get you through
the first few sections of problems...</font></p>
<p><font face="serif">For problem 15 in section 2.1 the depth of the
water is 1-h. The bounds of h are 0 and 1.</font></p>
<p><font face="serif">In problem 16 you are looking for the value of
omega.</font></p>
<p><font face="serif">In problem 28 in section 2.3 first take the
derivative and set it equal to zero to find the time to reach
the maximum --- then use this value of time to determine the
size of the dose. In the second part of that problem you will
need to consider the time AFTER the maximum is reached, so you
may need an expression like...</font></p>
<p><font face="serif"><math
xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mn>0.25</mn><mo>=</mo><mi>A</mi><mo
stretchy="false">(</mo><mi>t</mi><mo>+</mo><msub><mi>t</mi><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo
stretchy="false">)</mo><msup><mi>e</mi><mrow><mo>−</mo><mo
stretchy="false">(</mo><mi>t</mi><mo>+</mo><msub><mi>t</mi><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo
stretchy="false">)</mo><mo>/</mo><mn>3</mn></mrow></msup></mrow><annotation
encoding="TeX">0.25 = A(t+t_{max})e^{-(t+t_{max})/3}</annotation></semantics></math>where
t_max is the time to reach the maximum -- the total time to drop
to a concentration of 0.25 is then t+tmax. For the third part
of the problem you will obviously have to combine a few
equations.</font></p>
<p><font face="serif"><br>
</font></p>
<div class="moz-signature">-- <br>
<b><i>Andrew J. Pounds, Ph.D.</i></b><br>
<i>Professor of Chemistry and Computer Science</i><br>
<i>Director of the Computational Science Program</i><br>
<i>Mercer University, Macon, GA 31207 (478) 301-5627</i></div>
</body>
</html>