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1. INTRODUCTION

Through the course of this semester we have written a user application that sim-
ulates a fireworks display. The user can specify multiple launch parameters in
order to modify the physically realistic launch trajectory, shell explosion, and frag-
ment dispersion which will be simulated for the user by our program. The manner
in which the fireworks fragments explode is guided to preserve physical accuracy.
However, fragment particulars are randomized within a specified range such that
each firework is unique and yet still follows realistic physical limits. The program
can launch multiple fireworks, reports pertinent data to the user, and allows the
user some control over the simulation by manipulating viewing position inside of
the simulated scene using mouse and keyboard controls.

2. MATHEMATICAL MODEL

In order to visualize the motion of fireworks in real time, we must first have a method
of calculating the positions of both the fireworks’ shells and the shells’ respective
exploded fragments. This system can most easily be modeled by the standard
equations for projectile motion. The standard model given in most introductory
physics and calculus textbooks is something similar to the following [Smith and
Minton 2006]:

d2y

dt2
= −g

where g is the acceleration due to gravity. In this case, x is uninteresting because
its acceleration is 0, and therefore has constant velocity. However, this model is
unrealistic, because it does not consider the effects of air resistance. The force of
drag in a fluid, in our case air, changes the way in which a projectile moves through
it, changing its path based upon a drag coefficient. This leads us to form a more
complex model that incorporates drag. The force resulting from drag Fd is given
by the following equation [Fishbane et al. 2005]:

Fd =
1

2
ρACdv
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where ρ is the fluid density, A is the maximum cross-sectional area of the object, Cd

is the drag coefficient of the moving object, and v the velocity of the moving object.
Since we have the acting force, we can then solve for acceleration a by Newton’s
second law:

a =
ρACdv

2

2m

where m is the mass of the moving object. If we let

c =
ρACd

2m
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we can then rewrite our equation as

a = cv2

In our case, a and v are vectors because we are moving in space. So, we can
rewrite the equation as a vector:(

ax
ay

)
= c||~v||

(
vx
vy

)
or (

ax
ay

)
= c
√
v2x + v2y

(
vx
vy

)
This new notation may not be intuitive at first. However, consider the magnitude

of the velocity vector

(
vx
vy

)
. Now that it has been multiplied by its own magnitude,

the term ||~v||
(
vx
vy

)
has a magnitude ||~v||2.

Since acceleration and velocity are second and first derivatives of position, we
can write this second-order system as a first-order system of ordinary differential
equations. The below model incorporates both drag and gravity.
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− g

This equation cannot be solved analytically, unlike its simpler counterpart, so a
numerical approximation technique must be used instead to calculate the positional
values of a projectile at a given time. Moreover, the equation is second order
and many approximation techniques will not be applicable here. However, we can
transform the equations in the following manner to create a first order system:

dx

dt
= p

dy

dt
= q

dp

dt
= −cp

√
p2 + q2

dp

dt
= −cq

√
p2 + q2 − g

Now that we have a first-order system of ordinary differential equations, we can
then apply an approximation method to attain (x, y) pairs for any given start
conditions (x0, y0) and (vx0

, vy0
) = (p0, q0).
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In our case, we will apply a fourth-order Runge-Kutta method. This method
was chosen over others because of its relative simplicity and small amount error
compared to other methods, such as Euler’s method [Burden and Faires 2005].

The system described above only propagates in two dimensions rather than three
as would a real-life fireworks system. This problem can be resolved by storing the
system in cylindrical coordinates. We assume no other forces are acting upon the
firework at a given time other than gravity in the −z direction and air-resistance
working in both the vertical and horizontal axes of movement. So, we know that
the object will only move within the plane in which it is launched and never deviate
[Fishbane et al. 2005], meaning we can treat the system as a two-dimensional system
rotated around the z-axis by some constant θ, i.e. cylindrical coordinates. Using
our new representation, our system then becomes

dr

dt
= p

dz

dt
= q

dp

dt
= −cp

√
p2 + q2

dp

dt
= −cq

√
p2 + q2 − g

Each shell is given its own initial radial angle θ, initial velocity v0, and a launch
azimuthal angle φ0. Using the latter two, we can derive initial velocities both in
the r and z directions. Lastly, we assume that shells are launched from the origin.
Since, we now have all all initial conditions:

r0 = 0, z0 = 0,

dr0
dt

= p0 = v0cos(φ0)

dz0
dt

= q0 = v0sin(φ0)

we can step through the system using Runge-Kutta, and simulate the fireworks
position starting from the time t = 0.

3. DATA MANAGEMENT

Although we have a model that is relatively accurate, we still have to be able to
store pertinent data in the most cost effective way, and provide an interface for
accessing this data, in order to visualize the data later in OpenGL.

This was acheived with a series of structs. The first two are “base types,”
Vector2D and Vector3D, holding points in two-dimensional and three-dimensional
spaces respectvely. The next two structs, Shell and Fragment hold data pertinent
to a fireworks shell and shell fragment in flight, such as position and mass. Given
the number of shells to fire, an array is dynamically created to hold all of the shells
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at one time at the beginning of execution. For each of those shells, an array of
fragments is created, each with some percentage of their parent shell’s mass. The
total sum of the mass of all of these particles is always equals the mass of their
parent shell, because we consider mass to be conserved in the explosion (although
mass is not conserved afterwards).

Since the shells and fragments are propagating in cylindrical space, both Fragment

and Shell have a Vector2D and a θ value associated with them. The cylindrical
coordinates associated with a moving particle, be it a shell or fragment, is relative
to its own point of origin. So, in the case of the shell, the point of origin is (0, 0, 0).
In order to find the Cartesian coordinates for a shell, we can simply use the basic
conversion method for a cylindrical coordinate (rc, θc, zc) to a Cartesian coordinate
(xr, yr, zr) [Smith and Minton 2006]:

xr = rccos(θc)

yr = rcsin(θc)

zr = zc

For fragments, however, the conversion is different. Since the fragments’ point of
origin is the point where they exploded, their position is relative to the shell. So, to
convert to Cartesian, the coordinates must be converted separately and then added
as vectors, yielding the following conversion for a fragment with position (rf , θf , zf )
and explosion point (rs, θs, zs):

x = rfcos(θf ) + rscos(θs)

x = rfsin(θf ) + rssin(θs)

z = zf + zs

4. PHYSICAL ANALYSIS

As a result of the physically realistic model used for the propagation of the fireworks
and their fragments, it is possible to monitor physical parameters assigned to the
shells and fragments in order to extract information concerning the behavior of real
world fireworks. Many different properties can be considered in this way; however,
for this simulation, only those relevant to position and mass were chosen. Since
these properties were already known due to their necessity for the propagation of
the model, they were a natural choice. The center of mass and the bounding box
were chosen to be monitored throughout the simulation.

4.1 Bounding Box Calculations

To better understand the behavior of the fragments produced by the explosion
of the shells, we can consider the volume which encloses them throughout the
simulation. This volume is given by the box just big enough to hold all of the
fragments throughout the entire evolution of the fireworks display. Its sides are
defined by the maximum and minimum values of fragment positions in the x, y,
and z dimensions. Since these positions are updated at every step of the simulation
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in time, the bounding box grows in real time as more fireworks explode. The
bounding box provides information concerning the scale of the fireworks display
in the sky as well as the maximum and minimum height of burning fragments.
These factors are important for designing an impressive fireworks display as well
as one which would be safe for viewers. Everything outside of the bounding box
is guaranteed not to be in danger of coming into contact with burning firework
material.

In the graphical display, the bounding box is shown by a white wireframe box.
Should a burning fragment touch the ground, the color of the bounding box will
change to red to represent danger. The bounding box display is toggled on and off
with the B key.

4.2 Center of Mass Calculations

To better understand the motion of the fireworks as a whole, their center of mass
was calculated throughout the simulation. This is the point in 3D space which
behaves as if all of the mass of the shells and fragments were concentrated there
and as if all forces acting on the shells and fragments acted upon that location. The
center of mass responds to the force of the launching of each shell, the drag on the
shells and fragments, and gravity. Tracking its location reveals the nature of the
motion of the entire display. The calculation of the center of mass was performed
using its definition as provided in [Halliday et al. 2005]:

xcom =
1

M

n∑
i=1

mixi

ycom =
1

M

n∑
i=1

miyi

zcom =
1

M

n∑
i=1

mizi

Each of the x, y, and z components are calculated separately, but all follow the
same form. Given n total shells and fragments of combined mass M, the product
of each shell or fragments mass and x, y, or z position is summed for every shell
and fragment. The total is then divided by the total mass M. The 3D location of
the center of mass is then given by this calculation for x, y, and z.

Two different forms of the center of mass calculation were considered. The first
method considered all fireworks and fragments in the calculation, even those which
had not yet been launched. This resulted in a center of mass which hung low
to the ground at the start and slowly rose as the simulation progressed. The
tendency of the center of mass to keep lower is a result of the number of shells
waiting to be launched outweighing the shells and fragments in the air. While
this is a true representation of the center of mass of the entire system, it provides
little information about the dynamics in the sky at any given time. The second
method considered for the center of mass calculations took into account only shells
which had been launched into the air and all the burning fragments, which will be
collectively referred to as the active mass. This method provides a constant source
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of information concerning the motion of the fireworks display as seen by someone
enjoying the show. The observer will generally be concerned with the active mass
and not the large pile of fireworks waiting for launch, so this method of considering
the center of mass is more relevant to the experience of someone at a fireworks
show. The second method was used for our calculations as a result of its more
intuitive nature.

In the graphical display, the location of the center of mass is shown by a white
wireframe sphere. The radius of the sphere is a ratio of the active mass to the total
mass of the fireworks display, so as the active mass gets larger and smaller, so too
does the radius of the sphere. In this way, one can get a sense of the active mass as
time progresses. The center of mass display is toggled on and off with the C key.

4.3 Data Window and Textual Readout

The data window provides a 2D display of the trajectory of the center of mass from
a top down view. The trajectory is projected down into the x-y plane for display.
Due to the ability of the client to make the show as long as desired, an issue arose
with the amount of memory needed to save the entire trajectory to continue to have
it display throughout the simulation. The amount of memory in this situation is
unbounded. To resolve this issue, a matrix was allocated to represent the pixel grid
of the data window. The following functions were used to map the x-y coordinates
of the center of mass to the pixel grid of the data window as well as the matrix:

px =
xcom − Fxmin

Fxmax
− Fxmin

width

py =
ycom − Fymin

Fymax
− Fymin

height

The P values are the x and y locations in the pixel grid. The F values are the
maximum and minimum values of the range and domain of the area in x-y being
mapped to the window, and the Width and Height are the respective width and
height of the data window in pixels. For each new point in the trajectory, the
corresponding pixel location is generated and stored in the matrix. The matrix is
then used to display the trajectory in its entirety throughout the simulation.

In addition to the data window, a textual readout is provided to give more
information concerning system parameters. There are static values provided for
the user such as the number of shells to be launched, the length of the launch
window, and the total mass of the fireworks, but dynamically updating values are
also provided. These values are the size of the active mass, the number of shells in
the air, the number of burning fragments, and the maximum and minimum height
of burning fragments.

5. OPENGL FRAMEWORK

All of the graphics utilized in this project was written in C/C++ using the Open
Graphics Libraries (OpenGL). The Open Graphics Library allows us to model our
simulaiton in virtual space by creating a scene into which the simulation is drawn.
A proper rendering process is necessary in order to effectively use OpenGL and all
of its features.
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5.1 Graphics Pipeline

Once all of the data for any given scene has been calculated and prepared, it
is sent to the graphics pipeline for processing. The graphics pipeline uses this
data along with the OpenGL code to render the firework simulation. The pipeline
is essential because of the nature of frame manipulation. In graphics processing
any modifications to a scene are done via matrix operations, and because not all
matrix operations are commutitive, the transformation process needs to happen
in the correct order [Shirley and Marschner 2009] . Our program also needed the
ablility to render multiple layers into one window. Along with the simulation of
the fireworks display there is a user interface overlay which portrays information to
the user in two dimensions as opposed to the simulation’s three dimensions. This
is also handled by the graphics pipeline.

Our graphics pipeline is split into four major sections: the main function, the
display function, the idle function, and the interface functions. The main function
is where the program initializes. In the main OpenGL is called in, the window
is created, and the display, idle, and interface functions are linked in. The main
function, after initializing OpenGL and the interface functions, calls the display
function. The display function renders the scene using the information provided by
the physics calculations. The display function calls a set of subroutines to render
the scene, first drawing the fireworks scene, then the fireworks themselves, followed
by overlaying two dimensional user interface elements including an on-screen data
plot and control buttons.

Our pipeline uses double buffering in order to improve the performance of the
rendering process. Double buffering allows for two frames to be calculated at any
given time. Once a frame is completed it is pushed to the second buffer where it
will be cached and written to the screen. Since the frame is already rendered using
a second buffer, our program can begin rendering the next frame in the available
buffer while the current frame is being cached and drawn. This aides in not only
program performance, but also in the ability to animate seamlessly. In this way
we are able to render frames without as much delay for calculations increasing
framerates and delivering the user a more smooth simulation.

5.2 Texturing

For this project, we used texturing to our advantage by creating button ”textures”
and importing them in as a way to create otherwise difficult shapes in two dimen-
sions for the button controls. Texturing in OpenGL requires that images used as
textures be imported, converted, and loaded into memory. We chose to use RAW
image files and used a loading function to process the images and load them into
memory as part of the program initialization. The glTexImage2D() function sim-
plifies the process with RAW images. This allowed us to set the texture tags as
global variables and use them wherever in the code we desired, and also to only load
the textures once as opposed to every time the function for rendering the user inter-
face was called. Once the textures are loaded into memory applying the texture to
an object is as simple as binding the texture to a surface with the glBindTexture()
and glTexCoord functions.



8 ·

5.3 Optimization and Tuning

Propagating the fireworks’ trajectories between frames puts a significant strain on
the processor, especially with a large volume of shells being launched. As such,
performance was a primary concern when developing our code. One of the main
ways we were able to increase the performance of our program was to utilize the
full-screen capability of OpenGL. There are three window modes available to us:
single windows, sub-windows, and fullscreen [Kilgard ]. Single windows mean that
multiple windows can be created within one screen. This was disadvantageous for
our purposes because for every window a new frame is rendered. This lead to
very slow propagation due to the program constantly rendering between windows.
Sub-windows push separate windows into one large window, which consolidated
windows but still rendered each section of the frame independently. Fullscreen
mode, or game mode, captures the entire screen of the computer. Capturing the
entire screen means that only one frame is being calculated at every step which
increases performance.

When large amounts of fireworks were being launched frame rates still suffered
and as a result the propagation of the fireworks appeared to slow down. To coun-
teract the decreased framerates we use an adjustable time step for propagation.
Looking at the time between each frame allows us to modify the step value so
that instead of slowing down the propagation speed on the screen we increase the
amount of virtual time passed between each frame. Self adjusting step sizes allow
the program to be used on any computer regardless of hardware and still provide
a physically accurate propagation in real time.

6. CAMERA SETUP

In order to provide the ability to maneuver around a scene and manipulate the
viewport, a camera must be utilized to represent the viewer within the scene. By
default, the camera in OpenGL is located at the eye space coordinates (0, 0, 0)
and looks down the negative Z -axis. By utilizing the gluLookAt function from the
GLUT library, the camera can be manipulated. The gluLookAt command consists
of 9 parameters of type GLdouble [Khronos Group ]:

gluLookAt(eye.x, eye.y, eye.z, center.x, center.y, center.z, up.x, up.y, up.z)

The first three values define the location of the camera in three dimensions, the
next three values define a point to look at and the final three define which vector to
set as the up vector. In the fireworks simulation, this code is placed in the reshape

function and utilizes the global variable eye of type Vector3d. Once the camera is
set, the view type is set using the gluPerspective function. This function takes
four parameters of type GLdouble:

gluPerspective(fovy, aspect, zNear, zFar)

The variable fovy specifies the viewing angle in the y-direction and the aspect

specifies the viewing in the x -direction by taking the ratio of the height and width
of the viewport. The final two parameters specify the planes that bound the ren-
dering of the viewport along the z -direction. In order to set the parameters for
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gluPerspective appropriately for the scene, multiple test cases were performed to
ensure that the full scene was encompassed in the viewport.

7. MOUSE AND KEYBOARD INTERACTION

In order to allow for maneuvering around the scene, functionality was added to the
keyboard and mouse so that the options to pan, rotate and zoom around the scene.
First, the mouse functions were set up so that the user can use the mouse to pan
around the scene manually. This is done by utilizing the following functions:

glutMouseFunc(void( *callback )( int button, int state, int x, int y))

glutMotionFunc(void( *callback )( int x, int y ))

The glutMouseFunc is specified in the main method and provides the ability
to track the state and motion of the mouse and its buttons. In this simulation,
global variables are updated by this function so that other changes can take place
depending on their status. Once the variables are updated, the glutMotionFunc is
utilized to calculate the variation in position of the mouse only when the state of
the left button is down. By utilizing these functions together, we have the ability to
have a passive mouse in the viewport when not necessary. Next, interaction to move
the camera via the keyboard was added to the program. This was accomplished by
utilizing function 5 with a customized keyboard function.

glutKeyboardFunc(void (*func)(unsigned char key, int x, int y))

Similar to the glutMouseFunc, this function takes a pointer to a function with the
parameters specified in glutKeyboardFunc. The keyboard function in is initialized
in the main and allows for continuous listening for the keys that are pressed by the
user. The keys and their respective functions are as follows:

b: Toggle bounding box

c: Toggle center of mass

esc: Quit the program

l: Launch the fireworks

p: Pause the simulation

r/R: Auto-rotate the scene counter clockwise

f/F: Auto-rotate the scene clockwise

q/Q: Zoom out

e/E: Zoom in

s/S: Move up

w/W: Move down

d/D: Move right

a/A: Move left
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Once all of these keyboard and mouse interactions have been set up and initial-
ized, the program continues to look for an input. Once an input is received, the
variables are modified for their respective functions and are passed to the transfor-
mation pipeline. The transformation pipeline is set up in the function called camera
and contains the necessary matrix functions to modify the scene in accordance to
the user’s interactions. Prior to modification, the camera is translated to the center
of the scene, in this case the launch pad, transformed and then translated back.
This must be done to ensure that the transformations are occurring around the
correct center point for the scene. The camera function is then called from the
beginning of the display function prior to rendering the remainder of the scene.

8. CONCLUSION

Overall, the combinations of these features creates a realistic simulation of a fire-
works display. A mathematical model, combined the graphics capabilities of OpenGL
are used to create a scene. GLUT libraries are then utilized along with self-adjusting
code to create an animated scene, with user control and redering in real time. Be-
cause the program is modeling a physical system, properties of this system can and
are retrieved and displayed to to the user.
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