<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8">
</head>
<body text="#000000" bgcolor="#FFFFFF">
<p>The period of a pendulum is the time it takes a pendulum to move
from its starting point back to that point. In other words the
time for a swing forward plus the time for a swing back. If we
make the assumption that <img style="vertical-align: middle"
src="cid:part1.DAC82153.6D1CBF4E@mercer.edu" alt="$\theta$"> is
small so that <img style="vertical-align: middle"
src="cid:part2.59D35B31.B9CEA6EE@mercer.edu" alt="$\theta
\approx \sin(\theta)$"> then the period of the pendulum is given
by the equation seen in most general physics books.</p>
<p> <img style="vertical-align: middle"
src="cid:part3.07859223.3236378B@mercer.edu" alt="$T = 2 \pi
\sqrt{\frac{l}{g}}$"><br>
</p>
The problem we have is that our pendulum aren't idealized and cannot
use the assumption mentioned above. For that reason I have
included a Mathematica notebook that I built this evening that will
calculate the period of the pendulum based on <img
style="vertical-align: middle"
src="cid:part1.DAC82153.6D1CBF4E@mercer.edu" alt="$\theta$"> not
being close to 0. I used the "standard second" pendulum length of
0.994 m and standard gravity. With <img style="vertical-align:
middle" src="cid:part1.DAC82153.6D1CBF4E@mercer.edu"
alt="$\theta$"> being small this gives something very close to the
correct answer of 2 seconds for the pendulum. We will talk more
about this in class on Thursday, but feel free to play with the
Mathematica notebook and see what happens if you change the initial
<img style="vertical-align: middle"
src="cid:part1.DAC82153.6D1CBF4E@mercer.edu" alt="$\theta$"> to
something like <img style="vertical-align: middle"
src="cid:part7.194193E7.2E7FD2BF@mercer.edu" alt="$\pi$">/2.<br>
<br>
<br>
<pre class="moz-signature" cols="72">--
Andrew J. Pounds, Ph.D. (<a class="moz-txt-link-abbreviated" href="mailto:pounds_aj@mercer.edu">pounds_aj@mercer.edu</a>)
Professor of Chemistry and Computer Science
Mercer University, Macon, GA 31207 (478) 301-5627
<a class="moz-txt-link-freetext" href="http://faculty.mercer.edu/pounds_aj">http://faculty.mercer.edu/pounds_aj</a>
</pre>
</body>
</html>