The Development of a Tri-Use Cluster for General
Computer Education, High Performance Computing
Education, and Computationally Intensive Research

*
Andrew J. Pounds y
Dept. of Computer Science
Mercer University
1400 Coleman Avenue
Macon, GA 31207

pounds_aj@mercer.edu

ABSTRACT

This paper describes the construction of a tri-use computer
cluster for general computer science education, instruction
in parallel high performance computing, and computation-
ally intensive scientific research. While many schools today
are starting to include parallel computing in their curricu-
lum, a large number of smaller institutions lack the resources
to devote a significant amount of their equipment budget
exclusively to computers for parallel computing. Similarly,
many schools would like to have computational facilities for
scientific research, but cannot afford to designate machines
solely for this purpose. Our system allows for one set of sys-
tems to be easily shared between pedagogical and research
tasks. The system described herein utilizes standard hard-
ware components and a combination of open-source Linux
and commercial software. In addition, the development of
a software program to selectively boot between operating
systems is described.

Categories and Subject Descriptors

C.1.4 [Parallel Architectures|: Distributed architectures;
K.3.2 [Computer and Information Science Education)]:
Computer science education

General Terms

Performance

*Corresponding author.
JrAlso affiliated with the Department of Chemistry
iSys‘cem and Network Administrator.

§Undergradua.te research assistant.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

43"1 ACM Southeast Conference March 18-25, Kennesaw, GA, USA.
Copyright 2005 ACM 1-59593-059-0/05/0003 ...$5.00.

Rajeev Nalluri'
Dept. of Computer Science
Mercer University
1400 Coleman Avenue
Macon, GA 31207

nalluri_r@mercer.edu

Bennie L. Coleman§

Dept. of Computer Science
Mercer University
1400 Coleman Avenue
Macon, GA 31207

coleman_b@acadmn.mercer.edu

Keywords

High Performance Computing, Computational Science, Clus-
ters

1. INTRODUCTION

Parallel computing is quickly becoming one of the stan-
dard topics in computer science education. Unfortunately,
budgetary constraints prohibit many smaller colleges and
universities from teaching courses in parallel programming
because of the cost associated with building and maintain-
ing a separate set of computers for parallel computing in-
struction. Furthermore, faculty that come to small colleges
sometimes have to abandon their computationally intensive
projects due to a lack of adequate high performance com-
puting facilities. In short, to meet the most needs, a system
needs to be designed which allows for (1) general comput-
ing instruction in a non-UNIX environment, for (2) general
computing instruction in a UNIX environment, for (3) spe-
cific instruction in high performance parallel computing in a
UNIX environment, and (4) for high performance comput-
ing cycles to be used by scientific researchers. Our system
provides for all of these needs and does so in a manner to
minimize system downtime and maximize use of computer
systems on campus. Many current systems already imple-
ment (1) and (2) above. In these systems (1) pertains mainly
to instruction in computer competency courses for business
students and (2) pertains to mainly computer science core
programming classes. It is the addition of (3) and (4) that
make our system particularly attractive to smaller colleges
and universities.

2. SYSTEM DESCRIPTION

Two of the teaching labs at Mercer contain a total of 42 In-
tel Pentium 4 computer systems with 512 MBytes of memory
each. These machines are used during the daytime hours for
either teaching computer competency classes or for teaching
programming classes. Each time a system from one of these
labs is booted, it becomes a member of one of two operating
systems and one of three domains: blackhawk (Microsoft
Windows XP Operating System, CSDept domain), cobra
(RedHat Linux Operating System, Compsci domain), or
zeus (RedHat Linux Operating System,Olympus domain).

1-345

» ﬁ
ZEUS COBRA ; BLACKHAWK
(Olympus) 4 (Compsei) -7 (Windows)
i
—
[l
LS i O o OO
0 & ©&F =0 O o
0 & ©&F =0 O o
LS i O o OO
0 & ©&F =0 O o
0 & ©&F =0 O o

Figure 1: Diagram of the Tri-use cluster.

These systems and domains are schematically shown in Fig.
1. Password authentication is done by each domain server
and different user databases and authentication files are
present on the respective domain servers. During the day-
time the default boot OS is Microsoft Windows under the
control of blackhawk. If a student reboots the computer
during the daytime, they have the choice of either booting
into either Windows or Linux. The default daytime Linux
domain is “Compsci”, with all information for the program-
ming classes being stored on Cobra. Students working in a
class on parallel computing, however, have the ability during
the boot process, to respond to prompts that will place the
system within the Olympus parallel computing domain. At
night, the systems by default boot into the Linux OS within
the Olympus domain. Only machines in the Olympus do-
main can operate within the parallel environment.

Each of the servers shown in Fig. 1 can be logged into at
any time of day. Because users can log directly into Zeus
and Ajaz, parallel code can be developed and tested at any
time. Once tested, production runs can be run across the
entire cluster.

2.1 Hardware

No special hardware was used in this lab; all pieces are
off the shelf components. As can be seen in Fig 1, there are
three domain servers (Blackhawk, Cobra, and Zeus). These
are all dual processor systems. Zeus is a dual PIII Xeon sys-
tem while both Blackhawk and Cobra are PIV Xeon systems.
Each system has 1 GB of RAM with varying amounts of disk
space available on each system. The smallest amount of disk
space (18 GB) is located on Zeus. The other server in the di-
agram is Ajaz. It is a dual processor PIV Xeon System with
4 GB of RAM and a Terabyte of disk space. This disk space
is available to anyone using the Olympus cluster via NFS.
The primary role of Ajaz is to run jobs that require a signif-
icant amount of memory and scratch disk space. At present
all machines have 10/100/1000 mb/sec network cards and
run at 100 mb/sec to Catalyst switches. A gigabit channel
connects the two labs.

2.2 Software

There are four main issues that have to be addressed with
respect to the development of the system software: oper-
ating system switching, authentication, filesystems sharing,
parallel libraries, and job schedulers.

2.2.1 OS Switching

Thirty minutes after the lab doors are locked, either a
Linux cron job or a Windows scheduled event runs which
overwrites the grub.conf file on the Linux partition to set
the default boot OS and domain to Linux and Olympus.
Overwriting the grub.conf file from the Windows environ-
ment was accomplished by using a slightly modified form
of the LTOOLS [7] utility. The LTOOLS code had to be
modified and recompiled so that it would not prompt for a
response before overwriting the boot loader.

Once the boot process starts, the /etc/sysconfig/network
file is run. This file has been modified to boot into different
Linux NIS domains based on the time of day. For added
flexibility, the script was also modified to prompt users at
the console for the domain into which they want to boot.
This modified file must reside on each of the cluster ma-
chines. In addition, the /etc/yp.conf file must be modified
on each cluster machine. Both domain servers must appear
in the /etc/yp.conf file as two separate entries.

2.2.2 Authentication

While in the Linux OS, all user authentication is done
through the Network Information Service (NIS). Because
separate NIS user password files are maintained on Zeus and
Cobra, access can be limited by and to a specific domain. By
taking this approach, student access to the parallel cluster
can be limited to only students taking classes in parallel
computing. Similarly, researchers will only have accounts
the parallel environment so that they do not interfere with
class instruction taking place on departmental teaching sys-
tems. Zeus is the login server for the parallel environment
and the NIS master.

There is another positive consequence of designing the sys-

1-346

tem this way. Before this system was designed, the systems
in the laboratory were turned off at night for security pur-
poses. There was a concern that having so many computers
up and available to a large fraction of the student popu-
lation presented a security risk. In the new configuration,
where domains of all of the lab computers are switched to a
different NIS domain at night, the number of users that can
access the systems is dramatically reduced.

2.2.3 Filesystem Sharing

Based on the domain chosen, home directories are NFS
mounted from either cobra or zeus. Zeus contains all of the
home directories for users in the parallel environment. In
addition to this, a usr2 filesystem was created on zeus and
exported to all of the machines in the cluster. This filesys-
tem contains all of the common code and libraries needed
to develop, run, and test parallel applications. Finally, a
terabyte of disk space located on ajaz is exported to the
cluster for users to write large amounts of data. While users
are encouraged to use the local tmp directories on the clus-
ter machines to enhance disk performance and cut down on
NFS traffic, the NFS mounted directories on ajax are avail-
able for cases that are too big for the local temporary file
space.

2.2.4 Parallel Libraries

Currently both the PVM [2] and MPI [5] libraries are
available on the system. The MPI library is implemented
via MPICH. At present there are no commercial high per-
formance parallel compilers on the system. All code gen-
eration is done with the standard Gnu compiler suite that
comes with the Linux distribution.

2.2.5 Job Scheduler

The Portable Batch System (PBS) [3] was selected as the
batch scheduler for the system. Zeus serves as the job sched-
uler. At present three batch queues are available: one for
serial jobs, one for weeknight parallel jobs, and one for week-
end parallel jobs. Under the current configuration, up to 42
machines can be assigned to a single parallel job. Users are
responsible for checkpointing computational results. Serial
jobs can only be run on ajaz.

3. RESULTS

To demonstrate that the parallel environment works, and
to also get some idea about the general computational power
of the cluster, two sets of tests were conducted. In the first
case a direct matrix multiplication algorithm was run. In
the second case, a distributed electrostatic potential grid
calculation was run.

3.1 Direct Matrix Multiply

To test the usefulness of the cluster as a teaching tool
in parallel computing, a textbook parallel matrix multiply
method [6] was coded and run. Using the direct method
of parallel matrix multiplication, the product of two square
matrices dimensioned at 4000x4000 was computed using both
PVM and MPI. All of the tests were run through the PBS
job scheduler a minimum of five times to generate statisti-
cal data. A standard speedup curve was then plotted (Fig.
2) and these data fit to Amdahl’s law [1] to determine the
amount of code that had to be run serially.

10 ‘

& PVM Matrix Multiplication N
---- Fit to Amdahl’s Law (f=0.147)
MPI Matrix Multiplication 1
Fit to Amdahl’s law (f=0.053) 3
—— Theoretical Maximum Speedup }

Speedup Factor

|
AT

5
Number of Processors

Figure 2: Parallel matrix multiplication speedup
factor using two different message passing libraries

Based on the the data obtained in our matrix multiply
tests, there is clearly a performance difference between PVM
and MPI on our system. While the reason for this disparity
is unknown, it has been postulated that a problem existed
with one of our network switches when the PVM tests were
being conducted. If this is the case, it would also account
for the larger larger variability of results (notice the error
bars in Fig. 2) present in the PVM runs. Further tests are
necessary to determine if an actual problem exists.

3.2 Electrostatic Potential Generation

To test the usefulness of the cluster for research, a PVM
code for the generation of a 3D molecular electrostatic po-
tential [4] (ESP) was run across the cluster. A speedup

40 T T T

e 3-D Electrostatic Potential Calculation (PVM)
Fit to Amdahl’s Law (f=0.00507)
—— Maximum Theoretical Speedup

L1

30

20

Speedup Factor
L e L A e s
N
L]
.
o

o v v b b e b e 1
0 10 20 30
Number of Processors

=]
'S
=)

Figure 3: Parallel electrostatic potential computa-
tional speedup factor. Sustained average perfor-
mance with 40 machines was 8.4 GFlops using dou-
ble precision arithmetic.

The parallel ESP code utilizes a divide and conquer paral-
lelization strategy. When the results of this computational
method were originally presented, the author claimed a near
linear speedup. In that study the calculations were only run

1-347

across eight machines. Clearly, based on Fig. 3, the au-
thor was correct based on the limited number of machines
used. Only by using an increased number of machines does
one notice the scalability issues. Already this system has
demonstrated its usefulness for research by identifying scal-
ability problems in code that was thought to be devoid of
these problems.

In comparison to the matrix multiplication codes, the ESP
code does appear to scale much better. This is primarily due
to network loads. In the matrix multiply code, an entire
matrix was sent to each machine and then N/P columns
of the other matrix were sent to each machine (where N is
the number of machines and P is the number or processors
used). For a 4000x4000 matrix of doubles, a minimum of
128 MBytes of data must therefore be sent to each system.
The average message size for the ESP code is less than a
megabyte.

The other issue for research grade calculations is sustained
performance. By explicitly counting the floating point mul-
tiplies and adds, it was determined that the average perfor-
mance on the cluster utilizing 40 machines was 8400 megaflops
(8.4 GFlops) using double precision arithmetic. Clearly this
is satisfactory for research calculations.

4. DISCUSSION

For the last four months the system described in this pa-
per has been functioning flawlessly. Each night numerous
calculations come online and run for several ours and each
day the systems are used for their normal pedagogical pur-
poses. While the construction of the system has been an
marked as an unqualified success, it has also allowed us to
see that the major area for improvement is in the networking
infrastructure.

While grid computing has taken off in the last few years as
a way for researchers to get their calculations done, faculty
at smaller schools have often found themselves left out of
this picture. In addition, all parallel calculations cannot fit
into the “grid” model. Some calculations require significant
amounts of memory and disk space. It is hoped that, assum-
ing others adopt the model presented in this paper, smaller
schools could combine their resources to make larger clusters
that come online for research calculations after normal busi-
ness hours. With such a model, faculty at even small schools
would have computational resources to rival those at larger
institutions. Also, as more computational science programs
come online at colleges and universities around the coun-
try, there is going be an even greater need for these type
of high performance cycles for student work. The system
constructed in this paper is easy to build, cost effective, and
once started, very easy to maintain and could easily meet
the needs of these programs.

5. CONCLUSIONS

We have clearly demonstrated that it is possible to con-
struct a system of computers in such a way that they can
serve the needs of three academic groups: those needing
computers for their general coursework, those needing ac-
cess to computing resources to learn how to program, and
those that need high performance cycles for research. We
accomplish all of this by only making minor changes to two
Unix system files and adding a batch scheduler to control
the flow of job onto the system. The other significant con-

tribution of this research is the introduction of a method to
have the systems switch between operating systems auto-
matically at specific times of day.

6. ACKNOWLEDGMENTS

We would like to thank the Dr. Richard Fallis, Dean of the
College of Liberal Arts, and the Department of Computer
Science for providing funding for this project. We would
also like to thank Altair for granting us licenses to use the
PBS batch scheduler.

7. REFERENCES

[1] G. Amdahl. Validity of the single-processor approach to
achieving large-scale computing capabilities. In Proc.
1967 AFIPS Conf., volume 30, page 483, 1967.

[2] A. Geist, A. Beguelin, J. Dongarra, W. Jiang,

R. Manchek, and V. Sunderam. Parallel Virtual
Machine: A User’s Guide and Tutorial for Networked
Parallel Computing. MIT Press, Cambridge,
Massachusetts, 1994.

[3] J. P. Jones. Portable Batch System Users Guide. North
America, February 2004.

[4] A. Pounds, M. Buttersworth, and B. Mantooth. A high
performance web-based tool for molecular electronic
structure visualization. Journal of Computational
Sciences in Colleges, 19(3):238-248, January 2004.

[6] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and
J. Dongarra. MPI — The Complete Reference. Volume
1, The MPI Core, 2nd ed. MIT Press, Cambridge,
Massachusetts, 2000.

[6] B. Wilkinson and M. Allen. Parallel Programming:
Techniques and Applications Using Networked
Workstations and Parallel Computers, 2nd ed. Prentice
Hall, Upper Saddle River, New Jersey, 2004.

[7] W. Zimmermann. Ltools: Access your linux files from
windows 9x and windows nt. Linuz Journal, pages
164-171, November 2000.

1-348

