<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8">
</head>
<body text="#000000" bgcolor="#FFFFFF">
<p>While I have code in my driver to test VVM, DLS, ILS, and MMM, I
do not have code in my driver program to test DOT and MVV. Here
are two small things you can do to test these...</p>
<p><br>
</p>
<p>1. Test DOT by creating a small driver program in which you
create two arrays. <br>
</p>
<p>
<math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover><mi>A</mi><mo
stretchy="false">⇀</mo></mover><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mi>N</mi></mrow><annotation
encoding="TeX">\vec{A}=1,2,3,...,N</annotation></semantics></math><br>
</p>
<p>
<math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover><mi>B</mi><mo
stretchy="false">⇀</mo></mover><mo>=</mo><mn>1</mn><mo>,</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>,</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mfrac><mn>1</mn><mi>N</mi></mfrac></mrow><annotation
encoding="TeX">\vec{B}=1,\frac{1}{2},\frac{1}{3},...,\frac{1}{N}</annotation></semantics></math></p>
<p>and then take the dot product of the two. It should be equal to
<math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>N.
<br>
</mi></semantics></math></p>
<p> 2. Test MVV by attempting to rotate a small vector. Create a 3D
array.</p>
<p>
<math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover><mi>A</mi><mo
stretchy="false">⇀</mo></mover><mo>=</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn></mrow><annotation
encoding="TeX"></annotation></semantics></math><br>
</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation
encoding="TeX"></annotation></semantics></math><br>
</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation
encoding="TeX"></annotation></semantics></math><font
face="Helvetica, Arial, sans-serif">And then build a matrix that
will rotate this vector 90 degree about the Z axis.</font></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation
encoding="TeX"></annotation></semantics></math><font
face="Helvetica, Arial, sans-serif"><br>
</font></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>[</mo><mtable
displaystyle="false" rowspacing="0.5ex"><mtr><mtd><mo
lspace="0em" rspace="0em">cos</mo><mrow><mo>(</mo><mfrac><mi>π</mi><mn>2</mn></mfrac><mo>)</mo></mrow></mtd><mtd><mo>-</mo><mo
lspace="0em" rspace="0em">sin</mo><mrow><mo>(</mo><mfrac><mi>π</mi><mn>2</mn></mfrac><mo>)</mo></mrow></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mo
lspace="0em" rspace="0em">sin</mo><mrow><mo>(</mo><mfrac><mi>π</mi><mn>2</mn></mfrac><mo>)</mo></mrow></mtd><mtd><mo
lspace="0em" rspace="0em">cos</mo><mrow><mo>(</mo><mfrac><mi>π</mi><mn>2</mn></mfrac><mo>)</mo></mrow></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable><mo>]</mo></mrow><annotation
encoding="TeX">\begin{bmatrix}
\cos\left(\frac{\pi}{2}\right) &
-\sin\left(\frac{\pi}{2}\right) & 0\\
\sin\left(\frac{\pi}{2}\right) &
\cos\left(\frac{\pi}{2}\right) & 0 \\ 0 & 0 & 1
\end{bmatrix} </annotation></semantics></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation
encoding="TeX"></annotation></semantics></math><br>
</p>
<p>Multiply A by the matrix and you should get a vector (0,1,0)</p>
<p><br>
</p>
</body>
</html>